Jie Huang, Bin Qiu, Feng Xu, Jinyu Gao, Peixin Zhang, Chuanxin He, Hongwei Mi
{"title":"Steric Hindrance Manipulation in Polymer Electrolytes toward Wide-Temperature Solid-State Lithium Metal Batteries","authors":"Jie Huang, Bin Qiu, Feng Xu, Jinyu Gao, Peixin Zhang, Chuanxin He, Hongwei Mi","doi":"10.1021/acsenergylett.4c03602","DOIUrl":null,"url":null,"abstract":"Solid-state lithium metal batteries (LMBs) based on polymer electrolytes have become a hot topic for next-generation energy storage owing to their high specific energy, flexibility, and simple preparation process. However, poor electrolyte–electrode interface reactions and intrinsically slow Li<sup>+</sup> transfer kinetics limit the development of solid-state LMBs. Here, a tris(4-fluorophenyl)phosphine (T4FPP) additive with strong steric hindrance and weak coordination is introduced to remodel the Li<sup>+</sup> coordination environment to facilitate electrolyte bulk and interface charge transfer. Furthermore, theoretical analysis combined with <i>in situ</i>/<i>ex situ</i> characterizations demonstrate that the addition of T4FPP helps to construct an anion-dominated solvation structure through molecular crowding and form a LiF/Li<sub>2</sub>O-rich SEI layer. Ultimately, the LFP|Li full cell based on the T4FPP modified electrolyte works normally even at 10 C with a reversible specific capacity of 88.9 mAh g<sup>–1</sup>. Simultaneously, the electrochemical performance at 0–60 °C further verified the wide temperature range adaptability of the electrolyte.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"183 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03602","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state lithium metal batteries (LMBs) based on polymer electrolytes have become a hot topic for next-generation energy storage owing to their high specific energy, flexibility, and simple preparation process. However, poor electrolyte–electrode interface reactions and intrinsically slow Li+ transfer kinetics limit the development of solid-state LMBs. Here, a tris(4-fluorophenyl)phosphine (T4FPP) additive with strong steric hindrance and weak coordination is introduced to remodel the Li+ coordination environment to facilitate electrolyte bulk and interface charge transfer. Furthermore, theoretical analysis combined with in situ/ex situ characterizations demonstrate that the addition of T4FPP helps to construct an anion-dominated solvation structure through molecular crowding and form a LiF/Li2O-rich SEI layer. Ultimately, the LFP|Li full cell based on the T4FPP modified electrolyte works normally even at 10 C with a reversible specific capacity of 88.9 mAh g–1. Simultaneously, the electrochemical performance at 0–60 °C further verified the wide temperature range adaptability of the electrolyte.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.