Bionic Boiling Surface Inspired by Leaf Stomata

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Xu, Linshuang Long, Chusheng Chen, Hong Ye
{"title":"Bionic Boiling Surface Inspired by Leaf Stomata","authors":"Kai Xu, Linshuang Long, Chusheng Chen, Hong Ye","doi":"10.1021/acsami.4c21782","DOIUrl":null,"url":null,"abstract":"Enhancing boiling heat transfer performance through innovative surface modifications is a cornerstone of the progression of thermal and nuclear power generation, refrigeration, heat pump, and thermal management applications on the ground and in space. However, large-scale fabrication of modified boiling surfaces with substantially enhanced heat transfer performance remains challenging, necessitating innovative surface structure designs. Herein, we drew inspiration from stomatal transpiration in plant leaves and developed a nickel bionic boiling surface (BBS) featuring finger-like pores using the phase-inversion tape casting method, which is conducive to large-scale manufacturing and customization. The finger-like pores efficiently guide the bubbles, facilitating their timely release owing to the low mass transfer resistance of the straight pore structure. The abundance of nucleation sites on the finger-like pore walls is essential for the optimal onset of nucleate boiling, leading to an improved heat transfer coefficient. Moreover, the capillary force exerted by the micropores surrounding the finger-like pores continuously replenishes water to the nucleation sites, improving wettability and increasing the critical heat flux (CHF). The experimental results demonstrated that the CHF on the BBS reached 242.6 W/cm<sup>2</sup>, representing an increase of 163% compared to that on a plain nickel surface (92.1 W/cm<sup>2</sup>). The theoretical model utilized to elucidate the intensified boiling heat transfer mechanism of the BBS underscored the importance of enhancing and initiating the wetting and wicking effects, respectively. The findings of the study lay the foundation for a new paradigm in boiling surface design, thereby enhancing the efficiency of a wide range of energy conversion, refrigeration, heating, and thermal management applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"59 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21782","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing boiling heat transfer performance through innovative surface modifications is a cornerstone of the progression of thermal and nuclear power generation, refrigeration, heat pump, and thermal management applications on the ground and in space. However, large-scale fabrication of modified boiling surfaces with substantially enhanced heat transfer performance remains challenging, necessitating innovative surface structure designs. Herein, we drew inspiration from stomatal transpiration in plant leaves and developed a nickel bionic boiling surface (BBS) featuring finger-like pores using the phase-inversion tape casting method, which is conducive to large-scale manufacturing and customization. The finger-like pores efficiently guide the bubbles, facilitating their timely release owing to the low mass transfer resistance of the straight pore structure. The abundance of nucleation sites on the finger-like pore walls is essential for the optimal onset of nucleate boiling, leading to an improved heat transfer coefficient. Moreover, the capillary force exerted by the micropores surrounding the finger-like pores continuously replenishes water to the nucleation sites, improving wettability and increasing the critical heat flux (CHF). The experimental results demonstrated that the CHF on the BBS reached 242.6 W/cm2, representing an increase of 163% compared to that on a plain nickel surface (92.1 W/cm2). The theoretical model utilized to elucidate the intensified boiling heat transfer mechanism of the BBS underscored the importance of enhancing and initiating the wetting and wicking effects, respectively. The findings of the study lay the foundation for a new paradigm in boiling surface design, thereby enhancing the efficiency of a wide range of energy conversion, refrigeration, heating, and thermal management applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信