Min Wang, Lu-Cun Wang, Bin Liu, Yong Ding, Yingchao Yang, Dong Ding
{"title":"Promotional Effect of ZnO and ZrO2 in K-Doped Fe Catalysts for CO2 Hydrogenation to Light Olefins","authors":"Min Wang, Lu-Cun Wang, Bin Liu, Yong Ding, Yingchao Yang, Dong Ding","doi":"10.1021/acscatal.4c07100","DOIUrl":null,"url":null,"abstract":"Promoters play a critical role in tuning the activity and selectivity of Fe catalysts in CO<sub>2</sub> hydrogenation to produce light olefins, which are key building blocks in the petrochemical industry. Herein, by a combined experimental and theoretical approach, we show that high and stable performance of Fe catalysts could be achieved by taking advantage of the promotional effect of both Zn and Zr. Structural characterization indicates that ZnO could improve the dispersion and reducibility of Fe oxides and facilitate the formation of active Fe carbide species, whereas ZrO<sub>2</sub> could stabilize the structure and catalytic performance, especially the selectivity of hydrocarbon products. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments suggest that carbonate, bicarbonate, formate, and methoxy are essential intermediates in the CO<sub>2</sub> hydrogenation to hydrocarbon products, including paraffins and olefins. The conversion kinetics of each intermediate species are dependent on the type of promoters as well as the phase structure of the active Fe species. DFT calculations revealed a strong correlation between the formation energy of surface oxygen vacancies and that of Fe carbide species in promoted Fe oxides, in accordance with experimental results. Moreover, the calculated energy profiles of CO<sub>2</sub> hydrogenation over different catalysts indicate that Zn could promote the activation of CO<sub>2</sub> and its transformation to the oxygenate intermediates, while Zr could facilitate the conversion of oxygenates to hydrocarbon precursors. The discrepancies in the evolution trend of various intermediate species on promoted Fe catalysts in the transient DRIFTS experiments can be rationalized by the differences in energy barriers of elementary or rate limiting steps.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"34 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07100","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Promoters play a critical role in tuning the activity and selectivity of Fe catalysts in CO2 hydrogenation to produce light olefins, which are key building blocks in the petrochemical industry. Herein, by a combined experimental and theoretical approach, we show that high and stable performance of Fe catalysts could be achieved by taking advantage of the promotional effect of both Zn and Zr. Structural characterization indicates that ZnO could improve the dispersion and reducibility of Fe oxides and facilitate the formation of active Fe carbide species, whereas ZrO2 could stabilize the structure and catalytic performance, especially the selectivity of hydrocarbon products. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments suggest that carbonate, bicarbonate, formate, and methoxy are essential intermediates in the CO2 hydrogenation to hydrocarbon products, including paraffins and olefins. The conversion kinetics of each intermediate species are dependent on the type of promoters as well as the phase structure of the active Fe species. DFT calculations revealed a strong correlation between the formation energy of surface oxygen vacancies and that of Fe carbide species in promoted Fe oxides, in accordance with experimental results. Moreover, the calculated energy profiles of CO2 hydrogenation over different catalysts indicate that Zn could promote the activation of CO2 and its transformation to the oxygenate intermediates, while Zr could facilitate the conversion of oxygenates to hydrocarbon precursors. The discrepancies in the evolution trend of various intermediate species on promoted Fe catalysts in the transient DRIFTS experiments can be rationalized by the differences in energy barriers of elementary or rate limiting steps.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.