{"title":"μSonic-hand: Biomedical micromanipulation driven by acoustic gas-liquid-solid interactions","authors":"Xiaoming Liu, Yuyang Li, Fengyu Liu, Qing Shi, Lixin Dong, Qiang Huang, Tatsuo Arai, Toshio Fukuda","doi":"10.1126/sciadv.ads8167","DOIUrl":null,"url":null,"abstract":"<div >Micromanipulation is crucial for operating and analyzing microobjects in advanced biomedical applications. However, safe, low-cost, multifunctional micromanipulation for operating bio-objects across scales and modalities remains inaccessible. Here, we propose a versatile micromanipulation method driven by acoustic gas-liquid-solid interactions, named μSonic-hand. The bubble contained at the end of a micropipette and the surrounding liquid form a gas-liquid multiphase system susceptible to acoustic waves. Driven by a piezoelectric transducer, the oscillating gas-liquid interface induces acoustic microstreaming, markedly increasing the mass transfer efficiency. It enables multiple liquid micromanipulations, including mixing, dispersion, enhancing cell membrane permeability, and harvesting selected cells. Furthermore, a controllable three-dimensional axisymmetric vortex in an open environment overcomes the constraints of microfluidic chip, enabling stable trapping, rapid transportation, and multidirectional rotation of HeLa cells, embryos, and other bio-objects ranging from micrometers to millimeters. A variety of applications demonstrate that the μSonic-hand, with its wide-range capabilities, inherent biocompatibility, and extremely low cost could remarkably advance biomedical science.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads8167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads8167","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Micromanipulation is crucial for operating and analyzing microobjects in advanced biomedical applications. However, safe, low-cost, multifunctional micromanipulation for operating bio-objects across scales and modalities remains inaccessible. Here, we propose a versatile micromanipulation method driven by acoustic gas-liquid-solid interactions, named μSonic-hand. The bubble contained at the end of a micropipette and the surrounding liquid form a gas-liquid multiphase system susceptible to acoustic waves. Driven by a piezoelectric transducer, the oscillating gas-liquid interface induces acoustic microstreaming, markedly increasing the mass transfer efficiency. It enables multiple liquid micromanipulations, including mixing, dispersion, enhancing cell membrane permeability, and harvesting selected cells. Furthermore, a controllable three-dimensional axisymmetric vortex in an open environment overcomes the constraints of microfluidic chip, enabling stable trapping, rapid transportation, and multidirectional rotation of HeLa cells, embryos, and other bio-objects ranging from micrometers to millimeters. A variety of applications demonstrate that the μSonic-hand, with its wide-range capabilities, inherent biocompatibility, and extremely low cost could remarkably advance biomedical science.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.