A dual chemodrug-loaded hyaluronan nanogel for differentiation induction therapy of refractory AML via disrupting lysosomal homeostasis

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shilin Xu, Tao Wang, Xuechun Hu, Hong Deng, Yiyi Zhang, Lei Xu, Yang Zeng, Jia Yu, Weiqi Zhang, Lin Wang, Haiyan Xu
{"title":"A dual chemodrug-loaded hyaluronan nanogel for differentiation induction therapy of refractory AML via disrupting lysosomal homeostasis","authors":"Shilin Xu,&nbsp;Tao Wang,&nbsp;Xuechun Hu,&nbsp;Hong Deng,&nbsp;Yiyi Zhang,&nbsp;Lei Xu,&nbsp;Yang Zeng,&nbsp;Jia Yu,&nbsp;Weiqi Zhang,&nbsp;Lin Wang,&nbsp;Haiyan Xu","doi":"10.1126/sciadv.ado3923","DOIUrl":null,"url":null,"abstract":"<div >Relapsed/refractory acute myeloid leukemia (rrAML) is a malignant blood cancer with an extremely poor prognosis, largely ascribed to the drug-resistant leukemia stem cells (LSCs). Most patients suffer from a risk of difficult-to-cure as well as severe systemic toxicity when receiving standard chemotherapies. As hyaluronic acid (HA) is a specific ligand of CD44 highly expressed by LSCs, we had HA self-assembled with cisplatin and daunorubicin to form a dual chemodrug nanogel (HA/Cis/Dau) to afford the targeted therapeutic interventions of rrAML. HA/Cis/Dau displayed an extra therapeutic function of inducing the granulocyte-monocyte differentiation in CD44<sup>+</sup> rrAML cells, an rrAML mouse model, and primary blasts isolated from patients with AML. Unlike free drugs directly diffusing and killing rrAML cells, HA/Cis/Dau transported the drugs into lysosomes, causing lysosomal membrane permeabilization, ROS accumulation, and thus a metabolic reprogramming of the rrAML cells. Moreover, HA/Cis/Dau was featured with alleviated side effects, ease of preparation, and cost effectiveness, therefore holding great promises for the targeted treatment of rrAML.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado3923","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado3923","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Relapsed/refractory acute myeloid leukemia (rrAML) is a malignant blood cancer with an extremely poor prognosis, largely ascribed to the drug-resistant leukemia stem cells (LSCs). Most patients suffer from a risk of difficult-to-cure as well as severe systemic toxicity when receiving standard chemotherapies. As hyaluronic acid (HA) is a specific ligand of CD44 highly expressed by LSCs, we had HA self-assembled with cisplatin and daunorubicin to form a dual chemodrug nanogel (HA/Cis/Dau) to afford the targeted therapeutic interventions of rrAML. HA/Cis/Dau displayed an extra therapeutic function of inducing the granulocyte-monocyte differentiation in CD44+ rrAML cells, an rrAML mouse model, and primary blasts isolated from patients with AML. Unlike free drugs directly diffusing and killing rrAML cells, HA/Cis/Dau transported the drugs into lysosomes, causing lysosomal membrane permeabilization, ROS accumulation, and thus a metabolic reprogramming of the rrAML cells. Moreover, HA/Cis/Dau was featured with alleviated side effects, ease of preparation, and cost effectiveness, therefore holding great promises for the targeted treatment of rrAML.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信