Computational capacity of life in relation to the universe

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Philip Kurian
{"title":"Computational capacity of life in relation to the universe","authors":"Philip Kurian","doi":"10.1126/sciadv.adt4623","DOIUrl":null,"url":null,"abstract":"<div >As physical systems, all life in the universe processes information according to physical laws. Estimates for the computational capacity of living systems generally assume that the fundamental information-processing unit is the Hodgkin-Huxley neuron, thereby excluding aneural organisms. Assuming the laws of quantum mechanics, the relativistic speed limit set by light, a universe at critical mass-energy density, and a recent experimental demonstration of single-photon superradiance in cytoskeletal protein fibers at thermal equilibrium, it is conjectured that the number of elementary logical operations that can have been performed by all eukaryotic life in the history of Earth, which is shown to be approximately equal to the ratio of the age of the universe to the Planck time, is about the square root of the number by the entire observable universe from the beginning. The existence of ultraviolet-excited <span><math><mrow><mrow><mo>∣</mo><mspace></mspace><mi>W</mi><mspace></mspace><mo>〉</mo></mrow></mrow></math></span> states in these protein fibers, operating within two orders of magnitude of the Margolus-Levitin speed limit, motivates state-of-the-art performance comparisons with contemporary quantum computers.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt4623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt4623","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As physical systems, all life in the universe processes information according to physical laws. Estimates for the computational capacity of living systems generally assume that the fundamental information-processing unit is the Hodgkin-Huxley neuron, thereby excluding aneural organisms. Assuming the laws of quantum mechanics, the relativistic speed limit set by light, a universe at critical mass-energy density, and a recent experimental demonstration of single-photon superradiance in cytoskeletal protein fibers at thermal equilibrium, it is conjectured that the number of elementary logical operations that can have been performed by all eukaryotic life in the history of Earth, which is shown to be approximately equal to the ratio of the age of the universe to the Planck time, is about the square root of the number by the entire observable universe from the beginning. The existence of ultraviolet-excited W states in these protein fibers, operating within two orders of magnitude of the Margolus-Levitin speed limit, motivates state-of-the-art performance comparisons with contemporary quantum computers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信