A Ruthenium(II) Complex Inhibits BRD4 for Synergistic Seno- and Chemo-Immunotherapy in Cisplatin-Resistant Tumor Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinrong Yang, Fa Wang, Shuqi Huang, Tao Feng, Kai Xiong, Yu Chen, Hui Chao
{"title":"A Ruthenium(II) Complex Inhibits BRD4 for Synergistic Seno- and Chemo-Immunotherapy in Cisplatin-Resistant Tumor Cells","authors":"Jinrong Yang, Fa Wang, Shuqi Huang, Tao Feng, Kai Xiong, Yu Chen, Hui Chao","doi":"10.1002/anie.202505689","DOIUrl":null,"url":null,"abstract":"Drug resistance is a significant challenge for tumor therapy. Activating immunity is an effective method to combat drug-resistant tumors. Utilizing metallic chemotherapeutic agents to induce non-apoptotic programmed cell death is a practical approach to stimulate immunity. Besides, triggering tumor cell senescence, named senotherapy, is also an effective but often ignored method to induce immune responses. Despite some progress, reports on metallic immunotherapeutic stimuli are sparse and mainly delve into the level of organelle targeting, with vague drug–target mechanisms. Here, we report a Ru(II) complex (Ru2c) inhibits BRD4 with high affinity at a nanomolar constant. After encapsulated in to biotin-DNA cage, Ru2@biotin-DNA cage was demonstrated to kill drug-resistant cancer cells through a synergistic apoptosis-ferroptosis-senescence pathway, exhibiting 51-fold anticancer activity compared to the commercial inhibitor JQ-1. Ru2c effectively erased drug-resistant tumors and activated innate and acquired immunity in vivo. To the best of our knowledge, Ru2c is the first metal-based BRD4 inhibitor to achieve synergistic seno-immunotherapy and chemo-immunotherapy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug resistance is a significant challenge for tumor therapy. Activating immunity is an effective method to combat drug-resistant tumors. Utilizing metallic chemotherapeutic agents to induce non-apoptotic programmed cell death is a practical approach to stimulate immunity. Besides, triggering tumor cell senescence, named senotherapy, is also an effective but often ignored method to induce immune responses. Despite some progress, reports on metallic immunotherapeutic stimuli are sparse and mainly delve into the level of organelle targeting, with vague drug–target mechanisms. Here, we report a Ru(II) complex (Ru2c) inhibits BRD4 with high affinity at a nanomolar constant. After encapsulated in to biotin-DNA cage, Ru2@biotin-DNA cage was demonstrated to kill drug-resistant cancer cells through a synergistic apoptosis-ferroptosis-senescence pathway, exhibiting 51-fold anticancer activity compared to the commercial inhibitor JQ-1. Ru2c effectively erased drug-resistant tumors and activated innate and acquired immunity in vivo. To the best of our knowledge, Ru2c is the first metal-based BRD4 inhibitor to achieve synergistic seno-immunotherapy and chemo-immunotherapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信