Dielectric-Tailored Space Charge Layer and Ion Coordination Structure for High-Voltage Polymer All-Solid-State Lithium Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guanyou Xiao, Ke Yang, Yong Qiu, Peiran Shi, Guiming Zhong, Xufei An, Yuetao Ma, Likun Chen, Shaoke Guo, Jinshuo Mi, Zhuo Han, Tingzheng Hou, Hao Yan, Yun Tian, Xu Zhang, Yidan Cao, Ming Liu, Zhen Zhou, Yan-Bing He
{"title":"Dielectric-Tailored Space Charge Layer and Ion Coordination Structure for High-Voltage Polymer All-Solid-State Lithium Batteries","authors":"Guanyou Xiao,&nbsp;Ke Yang,&nbsp;Yong Qiu,&nbsp;Peiran Shi,&nbsp;Guiming Zhong,&nbsp;Xufei An,&nbsp;Yuetao Ma,&nbsp;Likun Chen,&nbsp;Shaoke Guo,&nbsp;Jinshuo Mi,&nbsp;Zhuo Han,&nbsp;Tingzheng Hou,&nbsp;Hao Yan,&nbsp;Yun Tian,&nbsp;Xu Zhang,&nbsp;Yidan Cao,&nbsp;Ming Liu,&nbsp;Zhen Zhou,&nbsp;Yan-Bing He","doi":"10.1002/adma.202415411","DOIUrl":null,"url":null,"abstract":"<p>The poor structural stability of polymer electrolytes and sluggish ion transport kinetics of interfaces with cathode limit the fundamental performance improvements of polymer all-solid-state lithium metal batteries under high voltages. Herein, it is revealed that by introducing dielectric BaTiO<sub>3</sub> in an in-situ polymerized composite solid-state electrolyte, the generated interaction between the ether group of polymer electrolyte and dielectric material could effectively regulate the lithium-ion (Li<sup>+</sup>) coordination structure to achieve an oxidative potential higher than 5.2 V. The dielectric BaTiO<sub>3</sub> with spontaneous polarization also weakens the space charge layer effect between the cathode and electrolyte, facilitating fast Li<sup>+</sup> transport kinetics across the cathode/electrolyte interfaces. The all-solid-state LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>/Li batteries with the dielectric composite solid-state electrolyte exhibit an ultra-long cycling life of 1800 and 1300 cycles at room temperature under high cut-off voltages of 4.6 and 4.7 V, respectively. This work highlights the critical role of dielectric materials in high-performance solid-state electrolytes and provides a promising strategy to realize high-voltage long-life all-solid-state lithium metal batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 20","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202415411","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The poor structural stability of polymer electrolytes and sluggish ion transport kinetics of interfaces with cathode limit the fundamental performance improvements of polymer all-solid-state lithium metal batteries under high voltages. Herein, it is revealed that by introducing dielectric BaTiO3 in an in-situ polymerized composite solid-state electrolyte, the generated interaction between the ether group of polymer electrolyte and dielectric material could effectively regulate the lithium-ion (Li+) coordination structure to achieve an oxidative potential higher than 5.2 V. The dielectric BaTiO3 with spontaneous polarization also weakens the space charge layer effect between the cathode and electrolyte, facilitating fast Li+ transport kinetics across the cathode/electrolyte interfaces. The all-solid-state LiNi0.8Co0.1Mn0.1O2/Li batteries with the dielectric composite solid-state electrolyte exhibit an ultra-long cycling life of 1800 and 1300 cycles at room temperature under high cut-off voltages of 4.6 and 4.7 V, respectively. This work highlights the critical role of dielectric materials in high-performance solid-state electrolytes and provides a promising strategy to realize high-voltage long-life all-solid-state lithium metal batteries.

Abstract Image

高压聚合物全固态锂电池的介质定制空间电荷层和离子配位结构
聚合物电解质结构稳定性差,与阴极界面离子输运动力学缓慢,限制了聚合物全固态锂金属电池在高压下性能的根本提高。研究发现,在原位聚合的复合固态电解质中引入介电BaTiO3,聚合物电解质与介电材料之间产生的醚基相互作用可以有效调节锂离子(Li+)配位结构,实现高于5.2 V的氧化电位。具有自发极化的电介质BaTiO3也减弱了阴极和电解质之间的空间电荷层效应,促进了Li+在阴极/电解质界面上的快速传输动力学。采用介电复合固态电解质制备的全固态LiNi0.8Co0.1Mn0.1O2/Li电池在高截止电压4.6 V和4.7 V下,室温循环寿命分别达到1800次和1300次。这项工作强调了介质材料在高性能固态电解质中的关键作用,为实现高压长寿命全固态锂金属电池提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信