Engineering lytic polysaccharide monooxygenases (LPMOs) for immobilisation on carbon nanotubes

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Kelsi R. Hall , Carlotta Pontremoli , Tom Z. Emrich-Mills , Fabrizio Careddu , Matteo Bonomo , Claudia Barolo , Vincent G.H. Eijsink , Silvia Bordiga , Morten Sørlie
{"title":"Engineering lytic polysaccharide monooxygenases (LPMOs) for immobilisation on carbon nanotubes","authors":"Kelsi R. Hall ,&nbsp;Carlotta Pontremoli ,&nbsp;Tom Z. Emrich-Mills ,&nbsp;Fabrizio Careddu ,&nbsp;Matteo Bonomo ,&nbsp;Claudia Barolo ,&nbsp;Vincent G.H. Eijsink ,&nbsp;Silvia Bordiga ,&nbsp;Morten Sørlie","doi":"10.1016/j.jcat.2025.116108","DOIUrl":null,"url":null,"abstract":"<div><div>Lytic polysaccharide monooxygenases (LPMOs) are mononuclear copper-containing enzymes that are able to oxidise C–H bonds in the glycoside linkages of polysaccharides. However, LPMOs are prone to oxidative damage, particularly in the absence of an adequate substrate. In this work, we investigated whether we could immobilise LPMOs and whether such immobilisation could enhance the stability of LPMOs while preserving the essential catalytic properties of the copper active site. Two LPMOs from different families, <em>Ls</em>AA9A and <em>Sc</em>AA10C, were selected and immobilised on carboxylic acid functionalised multiwalled-CNTs, using a two-step carbodiimide activation reaction. To improve the frequency of enzyme immobilisation and guide site-specific orientation, the enzymes were engineered, introducing two lysine residues on two different loops on the LPMO surface. Assessment of the oxidase and peroxidase activities of the LPMO-MWCNT bioconjugates showed that immobilisation of the engineered LPMO was much more efficient compared to the wild-type enzymes. The immobilised enzymes still showed activity on several substrates, confirming retained catalytic competence following immobilisation. Incubation of the free and immobilised LPMOs under damaging conditions indicated a protective effect of immobilisation for <em>Ls</em>AA9A-MWCNT, indicating that, for some LPMOs, immobilisation on MWCNTs may protect against oxidative damage.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"447 ","pages":"Article 116108"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951725001733","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are mononuclear copper-containing enzymes that are able to oxidise C–H bonds in the glycoside linkages of polysaccharides. However, LPMOs are prone to oxidative damage, particularly in the absence of an adequate substrate. In this work, we investigated whether we could immobilise LPMOs and whether such immobilisation could enhance the stability of LPMOs while preserving the essential catalytic properties of the copper active site. Two LPMOs from different families, LsAA9A and ScAA10C, were selected and immobilised on carboxylic acid functionalised multiwalled-CNTs, using a two-step carbodiimide activation reaction. To improve the frequency of enzyme immobilisation and guide site-specific orientation, the enzymes were engineered, introducing two lysine residues on two different loops on the LPMO surface. Assessment of the oxidase and peroxidase activities of the LPMO-MWCNT bioconjugates showed that immobilisation of the engineered LPMO was much more efficient compared to the wild-type enzymes. The immobilised enzymes still showed activity on several substrates, confirming retained catalytic competence following immobilisation. Incubation of the free and immobilised LPMOs under damaging conditions indicated a protective effect of immobilisation for LsAA9A-MWCNT, indicating that, for some LPMOs, immobilisation on MWCNTs may protect against oxidative damage.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信