Kun Fan, Xiang Li, Xiangyang Liu, Xin He, Zhi-Min Dang
{"title":"Regulating Carrier Transport Behavior for Capacitive Energy Storage of Polymer Dielectrics in Harsh Environments","authors":"Kun Fan, Xiang Li, Xiangyang Liu, Xin He, Zhi-Min Dang","doi":"10.1002/adma.202417181","DOIUrl":null,"url":null,"abstract":"Polymer dielectrics with high capacitive energy-storage levels in harsh environments have become key components in electrostatic capacitors. However, excessive losses in polymer dielectrics caused by high carrier densities at high temperatures and strong electric fields often result in low energy storage efficiency, which is the most challenging problem that urgently needs to be solved. In existing studies, the losses are mainly suppressed by limiting carrier formation; however, it is very challenging to completely limit carrier formation, especially at high temperatures and strong electric fields. Therefore, this perspective proposes to regulate the carrier transport behavior through “guiding/constraining/blocking” forms rather than the previously oversimplified carrier limitation strategy, which further clarifies dominant structure factors that inhibit carrier transport to reduce losses and enhance energy storage efficiency. Meanwhile, the influence of different structural designs on carrier transport behavior, individually or collaboratively, must be systematically studied to determine the specific mode of carrier transport behavior, thereby establishing a relationship between carrier transport behavior and energy storage efficiency. The presented perspective is expected to offer a novel and effective theoretical basis for the design and fabrication of advanced polymer dielectrics with high capacitive energy storage levels in harsh environments.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"30 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417181","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer dielectrics with high capacitive energy-storage levels in harsh environments have become key components in electrostatic capacitors. However, excessive losses in polymer dielectrics caused by high carrier densities at high temperatures and strong electric fields often result in low energy storage efficiency, which is the most challenging problem that urgently needs to be solved. In existing studies, the losses are mainly suppressed by limiting carrier formation; however, it is very challenging to completely limit carrier formation, especially at high temperatures and strong electric fields. Therefore, this perspective proposes to regulate the carrier transport behavior through “guiding/constraining/blocking” forms rather than the previously oversimplified carrier limitation strategy, which further clarifies dominant structure factors that inhibit carrier transport to reduce losses and enhance energy storage efficiency. Meanwhile, the influence of different structural designs on carrier transport behavior, individually or collaboratively, must be systematically studied to determine the specific mode of carrier transport behavior, thereby establishing a relationship between carrier transport behavior and energy storage efficiency. The presented perspective is expected to offer a novel and effective theoretical basis for the design and fabrication of advanced polymer dielectrics with high capacitive energy storage levels in harsh environments.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.