Xiuyu Jin, Di Huang, Qiusu Miao, Ziting Zhu, Wei Tong, Alvaro Videla, Gao Liu
{"title":"Operando Optical Microscopy for Visualization of Dendrite Growth in an Argyrodite LPSCl–Polymer Composite Electrolyte","authors":"Xiuyu Jin, Di Huang, Qiusu Miao, Ziting Zhu, Wei Tong, Alvaro Videla, Gao Liu","doi":"10.1021/acsenergylett.5c00281","DOIUrl":null,"url":null,"abstract":"Herein, we demonstrate the utility of optical microscopy as an accessible technique for the in situ visualization of dendrite growth within polymer–sulfide composite solid-state electrolytes. The composite electrolyte features in situ polymerization and cross-linking of the polymer between ceramic particles, which opens up extensive opportunities for accelerated materials discovery, given the vast array of acrylate/methacrylate monomers available. Specifically, the cross-linked polymer poly(triethylene glycol dimethacrylate) (poly(TEGDMA)) was observed to effectively fill pores and inhibit dendrite growth at the lithium metal interface, attributed to its glassy state at room temperature. This work represents the first application of optical microscopy to illustrate that the incorporation of glassy, undoped polymers such as poly(TEGDMA) can serve as a viable strategy for dendrite suppression in solid-state composite electrolytes.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"18 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we demonstrate the utility of optical microscopy as an accessible technique for the in situ visualization of dendrite growth within polymer–sulfide composite solid-state electrolytes. The composite electrolyte features in situ polymerization and cross-linking of the polymer between ceramic particles, which opens up extensive opportunities for accelerated materials discovery, given the vast array of acrylate/methacrylate monomers available. Specifically, the cross-linked polymer poly(triethylene glycol dimethacrylate) (poly(TEGDMA)) was observed to effectively fill pores and inhibit dendrite growth at the lithium metal interface, attributed to its glassy state at room temperature. This work represents the first application of optical microscopy to illustrate that the incorporation of glassy, undoped polymers such as poly(TEGDMA) can serve as a viable strategy for dendrite suppression in solid-state composite electrolytes.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.