Understanding degradation mechanisms in spray-coated alternating silicon-carbon thin films as anodes for lithium-ion batteries

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Tilo Held , Wiebke Hagemeier , Daniel Leykam , Christina Roth
{"title":"Understanding degradation mechanisms in spray-coated alternating silicon-carbon thin films as anodes for lithium-ion batteries","authors":"Tilo Held ,&nbsp;Wiebke Hagemeier ,&nbsp;Daniel Leykam ,&nbsp;Christina Roth","doi":"10.1016/j.electacta.2025.146123","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon's high specific capacity makes it one of the most promising new materials for anode applications. However, its performance is limited by its cycling stability. Approaches to remedy the various degradation mechanisms (pulverization, delamination and excessive solid electrolyte interphase (SEI) formation) include the use of silicon-carbon (Si/C) composites or the manufacturing of thin layers. In this study, two approaches were combined by producing alternating silicon and reduced graphene oxide (rGO) layers using a spray-coating process. This allowed us to draw important conclusions regarding the relationship between the silicon layer thickness and the total silicon content of the electrode and the resulting degradation behavior. Moreover, this study examined the suitability of prelithiated polyacrylic acid (LiPAA) as binder for spray-coating and its electrochemical performance. Using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and optical microscopy cross-sections, electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT) and galvanostatic cycling, it could be demonstrated that the silicon layer thickness is a limiting factor for a stable cycling performance and can therefore result in an inhomogeneous charge distribution within the electrode. Understanding the correlation between the layer morphology and degradation behavior is essential to allow for the realization of composite electrodes with a high capacity retention.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"525 ","pages":"Article 146123"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625004852","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon's high specific capacity makes it one of the most promising new materials for anode applications. However, its performance is limited by its cycling stability. Approaches to remedy the various degradation mechanisms (pulverization, delamination and excessive solid electrolyte interphase (SEI) formation) include the use of silicon-carbon (Si/C) composites or the manufacturing of thin layers. In this study, two approaches were combined by producing alternating silicon and reduced graphene oxide (rGO) layers using a spray-coating process. This allowed us to draw important conclusions regarding the relationship between the silicon layer thickness and the total silicon content of the electrode and the resulting degradation behavior. Moreover, this study examined the suitability of prelithiated polyacrylic acid (LiPAA) as binder for spray-coating and its electrochemical performance. Using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and optical microscopy cross-sections, electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT) and galvanostatic cycling, it could be demonstrated that the silicon layer thickness is a limiting factor for a stable cycling performance and can therefore result in an inhomogeneous charge distribution within the electrode. Understanding the correlation between the layer morphology and degradation behavior is essential to allow for the realization of composite electrodes with a high capacity retention.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信