Tumor-derived arachidonic acid reprograms neutrophils to promote immune suppression and therapy resistance in triple-negative breast cancer

IF 25.5 1区 医学 Q1 IMMUNOLOGY
Liqun Yu, Keziah Liebenberg, Yichao Shen, Fengshuo Liu, Zhan Xu, Xiaoxin Hao, Ling Wu, Weijie Zhang, Hilda L. Chan, Bo Wei, Philip L. Lorenzi, Yang Gao, Igor Bado, Luis Becerra-Dominguez, Charlotte Helena Rivas, Sergio Aguirre, Bradley C. Pingel, Yi-Hsuan Wu, Yunfeng Ding, Jun Liu, Xiang H.-F. Zhang
{"title":"Tumor-derived arachidonic acid reprograms neutrophils to promote immune suppression and therapy resistance in triple-negative breast cancer","authors":"Liqun Yu, Keziah Liebenberg, Yichao Shen, Fengshuo Liu, Zhan Xu, Xiaoxin Hao, Ling Wu, Weijie Zhang, Hilda L. Chan, Bo Wei, Philip L. Lorenzi, Yang Gao, Igor Bado, Luis Becerra-Dominguez, Charlotte Helena Rivas, Sergio Aguirre, Bradley C. Pingel, Yi-Hsuan Wu, Yunfeng Ding, Jun Liu, Xiang H.-F. Zhang","doi":"10.1016/j.immuni.2025.03.002","DOIUrl":null,"url":null,"abstract":"The combination of immune checkpoint blockade and chemotherapies is the standard of care for triple-negative breast cancer (TNBC). However, initially, responsive tumors can still develop recurrences, suggesting acquired resistance mechanisms that remain poorly understood. Herein, we discover that TNBC cells surviving anti-programmed cell death protein-1 (anti-PD-1) and chemotherapy treatment accumulate neutral lipids. Disrupting lipid droplet formation in cancer cells reverses resistance and mitigates the immunosuppressive microenvironment. Single-cell RNA sequencing reveals a subset of neutrophils exhibiting a lipid-laden phenotype similar to adjacent tumor cells. Mechanistically, tumor-derived extracellular vesicles carrying lipids, including arachidonic acid (AA), mediate neutrophil reprogramming. Blocking dietary intake of omega-6 fatty acids or inhibiting fatty acid elongation for AA synthesis restores anti-tumor immunity and re-sensitizes the resistant tumors to anti-PD-1 and chemotherapy treatment. In human patients, AA metabolism-related pathways correlates with neutrophil enrichment. Overall, we demonstrate how lipid accumulation in TNBC cells leads to immune suppression and therapy resistance.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"13 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.03.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of immune checkpoint blockade and chemotherapies is the standard of care for triple-negative breast cancer (TNBC). However, initially, responsive tumors can still develop recurrences, suggesting acquired resistance mechanisms that remain poorly understood. Herein, we discover that TNBC cells surviving anti-programmed cell death protein-1 (anti-PD-1) and chemotherapy treatment accumulate neutral lipids. Disrupting lipid droplet formation in cancer cells reverses resistance and mitigates the immunosuppressive microenvironment. Single-cell RNA sequencing reveals a subset of neutrophils exhibiting a lipid-laden phenotype similar to adjacent tumor cells. Mechanistically, tumor-derived extracellular vesicles carrying lipids, including arachidonic acid (AA), mediate neutrophil reprogramming. Blocking dietary intake of omega-6 fatty acids or inhibiting fatty acid elongation for AA synthesis restores anti-tumor immunity and re-sensitizes the resistant tumors to anti-PD-1 and chemotherapy treatment. In human patients, AA metabolism-related pathways correlates with neutrophil enrichment. Overall, we demonstrate how lipid accumulation in TNBC cells leads to immune suppression and therapy resistance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信