Liqun Yu, Keziah Liebenberg, Yichao Shen, Fengshuo Liu, Zhan Xu, Xiaoxin Hao, Ling Wu, Weijie Zhang, Hilda L. Chan, Bo Wei, Philip L. Lorenzi, Yang Gao, Igor Bado, Luis Becerra-Dominguez, Charlotte Helena Rivas, Sergio Aguirre, Bradley C. Pingel, Yi-Hsuan Wu, Yunfeng Ding, Jun Liu, Xiang H.-F. Zhang
{"title":"Tumor-derived arachidonic acid reprograms neutrophils to promote immune suppression and therapy resistance in triple-negative breast cancer","authors":"Liqun Yu, Keziah Liebenberg, Yichao Shen, Fengshuo Liu, Zhan Xu, Xiaoxin Hao, Ling Wu, Weijie Zhang, Hilda L. Chan, Bo Wei, Philip L. Lorenzi, Yang Gao, Igor Bado, Luis Becerra-Dominguez, Charlotte Helena Rivas, Sergio Aguirre, Bradley C. Pingel, Yi-Hsuan Wu, Yunfeng Ding, Jun Liu, Xiang H.-F. Zhang","doi":"10.1016/j.immuni.2025.03.002","DOIUrl":null,"url":null,"abstract":"The combination of immune checkpoint blockade and chemotherapies is the standard of care for triple-negative breast cancer (TNBC). However, initially, responsive tumors can still develop recurrences, suggesting acquired resistance mechanisms that remain poorly understood. Herein, we discover that TNBC cells surviving anti-programmed cell death protein-1 (anti-PD-1) and chemotherapy treatment accumulate neutral lipids. Disrupting lipid droplet formation in cancer cells reverses resistance and mitigates the immunosuppressive microenvironment. Single-cell RNA sequencing reveals a subset of neutrophils exhibiting a lipid-laden phenotype similar to adjacent tumor cells. Mechanistically, tumor-derived extracellular vesicles carrying lipids, including arachidonic acid (AA), mediate neutrophil reprogramming. Blocking dietary intake of omega-6 fatty acids or inhibiting fatty acid elongation for AA synthesis restores anti-tumor immunity and re-sensitizes the resistant tumors to anti-PD-1 and chemotherapy treatment. In human patients, AA metabolism-related pathways correlates with neutrophil enrichment. Overall, we demonstrate how lipid accumulation in TNBC cells leads to immune suppression and therapy resistance.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"13 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.03.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of immune checkpoint blockade and chemotherapies is the standard of care for triple-negative breast cancer (TNBC). However, initially, responsive tumors can still develop recurrences, suggesting acquired resistance mechanisms that remain poorly understood. Herein, we discover that TNBC cells surviving anti-programmed cell death protein-1 (anti-PD-1) and chemotherapy treatment accumulate neutral lipids. Disrupting lipid droplet formation in cancer cells reverses resistance and mitigates the immunosuppressive microenvironment. Single-cell RNA sequencing reveals a subset of neutrophils exhibiting a lipid-laden phenotype similar to adjacent tumor cells. Mechanistically, tumor-derived extracellular vesicles carrying lipids, including arachidonic acid (AA), mediate neutrophil reprogramming. Blocking dietary intake of omega-6 fatty acids or inhibiting fatty acid elongation for AA synthesis restores anti-tumor immunity and re-sensitizes the resistant tumors to anti-PD-1 and chemotherapy treatment. In human patients, AA metabolism-related pathways correlates with neutrophil enrichment. Overall, we demonstrate how lipid accumulation in TNBC cells leads to immune suppression and therapy resistance.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.