{"title":"ER nests are specialized ER subdomains in Arabidopsis where peroxisomes and lipid droplets form","authors":"Zachary J. Wright, Nathan E. Tharp, Bonnie Bartel","doi":"10.1016/j.devcel.2025.03.005","DOIUrl":null,"url":null,"abstract":"Organelles are defining features of eukaryotic cells, yet much remains to be learned about organelle biogenesis. Lipid droplets and peroxisomes, which play opposing roles in storing and catabolizing fats, form from a mysterious domain in the endoplasmic reticulum (ER). We used live-cell fluorescence microscopy to visualize peroxisome and lipid droplet biogenesis in young Arabidopsis seedlings, where lipid catabolism is active, and peroxisomes can be unusually large. We found that the ER domains where these organelles are born, which we term ER nests, are complex, dynamic structures that exclude general ER proteins but accumulate other proteins, including lipid biosynthetic enzymes and the COPII component SAR1. Furthermore, ER nests appear to define peroxisome-lipid droplet contact sites. Our findings provide a framework for understanding how these domains form and sort their protein components, illuminate eukaryotic lipid biosynthesis, and elucidate how distinct organelles arise from the ER.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"183 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.03.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organelles are defining features of eukaryotic cells, yet much remains to be learned about organelle biogenesis. Lipid droplets and peroxisomes, which play opposing roles in storing and catabolizing fats, form from a mysterious domain in the endoplasmic reticulum (ER). We used live-cell fluorescence microscopy to visualize peroxisome and lipid droplet biogenesis in young Arabidopsis seedlings, where lipid catabolism is active, and peroxisomes can be unusually large. We found that the ER domains where these organelles are born, which we term ER nests, are complex, dynamic structures that exclude general ER proteins but accumulate other proteins, including lipid biosynthetic enzymes and the COPII component SAR1. Furthermore, ER nests appear to define peroxisome-lipid droplet contact sites. Our findings provide a framework for understanding how these domains form and sort their protein components, illuminate eukaryotic lipid biosynthesis, and elucidate how distinct organelles arise from the ER.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.