Wen Xu, Yulong Wu, Darya Snihirova, Linqian Wang, Min Deng, Cheng Wang, Sviatlana V. Lamaka, Mikhail L. Zheludkevich, Daniel Höche
{"title":"Mathematical modeling of salicylate effects on high-purity Mg anode for aqueous primary Mg-Air batteries","authors":"Wen Xu, Yulong Wu, Darya Snihirova, Linqian Wang, Min Deng, Cheng Wang, Sviatlana V. Lamaka, Mikhail L. Zheludkevich, Daniel Höche","doi":"10.1016/j.jma.2025.02.027","DOIUrl":null,"url":null,"abstract":"This study investigates the effectiveness of salicylate (SAL) as an electrolyte additive on the discharge behavior of high-purity (HP) Mg anode in an aqueous half-cell system, using an integrated approach of mathematical modeling and experimental analysis. A finite element-based model is developed to elucidate the key mechanisms by which SAL influences the voltage profile and pH. Systematic electrochemical measurements, especially intermittent discharge tests combined with electrochemical impedance spectroscopy (EIS), demonstrate that SAL can enhance initial voltage stability of HP Mg anode. Moreover, the model incorporates the SAL-Mg complexation factor to describe the role of SAL in modifying the deposit film on HP Mg surface. The agreement between model predictions and experimental observations suggests that SAL facilitates the formation of compact Mg(OH)<sub>2</sub> deposits and sustains a favorable pH environment within the half-cell compartment. This integrated approach provides new insights into understanding and optimizing additive effects for Mg-air batteries.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"16 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effectiveness of salicylate (SAL) as an electrolyte additive on the discharge behavior of high-purity (HP) Mg anode in an aqueous half-cell system, using an integrated approach of mathematical modeling and experimental analysis. A finite element-based model is developed to elucidate the key mechanisms by which SAL influences the voltage profile and pH. Systematic electrochemical measurements, especially intermittent discharge tests combined with electrochemical impedance spectroscopy (EIS), demonstrate that SAL can enhance initial voltage stability of HP Mg anode. Moreover, the model incorporates the SAL-Mg complexation factor to describe the role of SAL in modifying the deposit film on HP Mg surface. The agreement between model predictions and experimental observations suggests that SAL facilitates the formation of compact Mg(OH)2 deposits and sustains a favorable pH environment within the half-cell compartment. This integrated approach provides new insights into understanding and optimizing additive effects for Mg-air batteries.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.