Metal–Organic Framework-Derived Zinc–Cobalt Oxide Materials as High-Performance Anodes for Direct Methanol Fuel Cell Application

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anshu Kumari, Sayani Debnath, Sumit, Apurba Borah, Gaddam Rajeshkhanna
{"title":"Metal–Organic Framework-Derived Zinc–Cobalt Oxide Materials as High-Performance Anodes for Direct Methanol Fuel Cell Application","authors":"Anshu Kumari, Sayani Debnath, Sumit, Apurba Borah, Gaddam Rajeshkhanna","doi":"10.1021/acs.langmuir.5c00116","DOIUrl":null,"url":null,"abstract":"Due to the exhaustion of fossil fuels and rising concerns about environmental pollution, direct methanol fuel cells (DMFCs) have emerged as one of the prominent green energy solutions in recent decades. However, the commercialization of DMFCs faces a significant challenge due to the dependence on expensive noble-metal-based electrode materials and the issue of methanol crossover. Therefore, there has been growing interest in developing cost-effective, high-performance anode catalysts to enhance the methanol oxidation reaction (MOR). In this work, unexplored non-noble transition metal oxide materials, such as metal–organic framework (MOF)-derived ZnO, ZnCo<sub>2</sub>O<sub>4</sub>, and Zn<sub>2</sub>CoO<sub>4</sub>, were directly synthesized on Ni foam using a simple solvothermal method, followed by calcination. The MOR activity of all the materials was tested in a 0.5 M methanol solution under alkaline conditions. Due to the synergetic effect of combined metallic composition, mixed metal oxides exhibited superior performance. The order of MOR activity was measured to be ZnO &lt; Zn<sub>2</sub>CoO<sub>4</sub> &lt; ZnCo<sub>2</sub>O<sub>4</sub>. Particularly, ZnCo<sub>2</sub>O<sub>4</sub> exhibited the highest mass activity (42.64 mA mg<sup>–1</sup>) and geometric current density (166.28 mA cm<sup>–2</sup>), outperforming Zn<sub>2</sub>CoO<sub>4</sub> (27.44 mA mg<sup>–1</sup>) and ZnO (12.72 mA mg<sup>–1</sup>). It also demonstrated the lowest onset potential of 1.32 V (vs RHE) compared to Zn<sub>2</sub>CoO<sub>4</sub> (1.35 V) and ZnO (1.39 V) and maintained excellent long-term stability for 12 h at 1.5 V (vs RHE). Additionally, to determine the optimal methanol concentration, all electrocatalysts were tested across a range of methanol concentrations from 0.1 to 1 M, showing 0.5 M methanol as the most suitable concentration. This study aims to develop cost-effective MOF-derived electrode materials and optimize methanol concentration to maximize catalytic activity. Furthermore, it establishes a foundation for the development of various MOF-derived electrocatalysts and the advancement of DMFC technology.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"36 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00116","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the exhaustion of fossil fuels and rising concerns about environmental pollution, direct methanol fuel cells (DMFCs) have emerged as one of the prominent green energy solutions in recent decades. However, the commercialization of DMFCs faces a significant challenge due to the dependence on expensive noble-metal-based electrode materials and the issue of methanol crossover. Therefore, there has been growing interest in developing cost-effective, high-performance anode catalysts to enhance the methanol oxidation reaction (MOR). In this work, unexplored non-noble transition metal oxide materials, such as metal–organic framework (MOF)-derived ZnO, ZnCo2O4, and Zn2CoO4, were directly synthesized on Ni foam using a simple solvothermal method, followed by calcination. The MOR activity of all the materials was tested in a 0.5 M methanol solution under alkaline conditions. Due to the synergetic effect of combined metallic composition, mixed metal oxides exhibited superior performance. The order of MOR activity was measured to be ZnO < Zn2CoO4 < ZnCo2O4. Particularly, ZnCo2O4 exhibited the highest mass activity (42.64 mA mg–1) and geometric current density (166.28 mA cm–2), outperforming Zn2CoO4 (27.44 mA mg–1) and ZnO (12.72 mA mg–1). It also demonstrated the lowest onset potential of 1.32 V (vs RHE) compared to Zn2CoO4 (1.35 V) and ZnO (1.39 V) and maintained excellent long-term stability for 12 h at 1.5 V (vs RHE). Additionally, to determine the optimal methanol concentration, all electrocatalysts were tested across a range of methanol concentrations from 0.1 to 1 M, showing 0.5 M methanol as the most suitable concentration. This study aims to develop cost-effective MOF-derived electrode materials and optimize methanol concentration to maximize catalytic activity. Furthermore, it establishes a foundation for the development of various MOF-derived electrocatalysts and the advancement of DMFC technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信