Understanding the Selectivity Differences of NO Electroreduction on Ag and Au Electrodes

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lin Li, Dong Luan, Jun Long, Jianping Xiao
{"title":"Understanding the Selectivity Differences of NO Electroreduction on Ag and Au Electrodes","authors":"Lin Li, Dong Luan, Jun Long, Jianping Xiao","doi":"10.1021/acs.jpclett.5c00656","DOIUrl":null,"url":null,"abstract":"Although noble metals Ag and Au have similar chemical reactivities, their catalytic selectivity for NO electroreduction is significantly different. Namely, hydroxylamine is often considerably produced on Ag while not observed on the Au electrode. In this study, first-principles calculations and the electric field controlling constant potential (EFC–CP) method are adopted to unveil the underlying reasons. We first reveal a distinct NO* adsorption configuration, vertical on Ag and inclined on Au, leading to different reduction pathways to NOH* and HNO*, respectively. Via complete electrochemical barrier calculations and detailed kinetic analysis, we find the hydroxylamine selectivity difference between Ag and Au is mainly induced by adsorption strength of NH<sub>2</sub>OH*. On Ag, the obtained NH<sub>2</sub>OH* prefers to desorb and produce hydroxylamine, while NH<sub>2</sub>OH* is bonded strongly to Au and favors further reduction to ammonia. The study advances our understanding of factors regulating product selectivity, providing crucial insights for designing NO electroreduction catalysts toward hydroxylamine production.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"30 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00656","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although noble metals Ag and Au have similar chemical reactivities, their catalytic selectivity for NO electroreduction is significantly different. Namely, hydroxylamine is often considerably produced on Ag while not observed on the Au electrode. In this study, first-principles calculations and the electric field controlling constant potential (EFC–CP) method are adopted to unveil the underlying reasons. We first reveal a distinct NO* adsorption configuration, vertical on Ag and inclined on Au, leading to different reduction pathways to NOH* and HNO*, respectively. Via complete electrochemical barrier calculations and detailed kinetic analysis, we find the hydroxylamine selectivity difference between Ag and Au is mainly induced by adsorption strength of NH2OH*. On Ag, the obtained NH2OH* prefers to desorb and produce hydroxylamine, while NH2OH* is bonded strongly to Au and favors further reduction to ammonia. The study advances our understanding of factors regulating product selectivity, providing crucial insights for designing NO electroreduction catalysts toward hydroxylamine production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信