Feasibility of Active and Durable Lattice Oxygen-Mediated Oxygen Evolution Electrocatalysts in Proton Exchange Membrane Water Electrolyzers Through d0 Metal Ion Incorporation
Yeju Jang, Hoyoung Kim, Dongmin Park, Sunghoon Han, Hyunwoo Jun, Jinkyu Park, Seongbeen Kim, Yousung Jung, Chang Hyuck Choi, Jong Hyun Jang, Seonggyu Lee, Jinwoo Lee
{"title":"Feasibility of Active and Durable Lattice Oxygen-Mediated Oxygen Evolution Electrocatalysts in Proton Exchange Membrane Water Electrolyzers Through d0 Metal Ion Incorporation","authors":"Yeju Jang, Hoyoung Kim, Dongmin Park, Sunghoon Han, Hyunwoo Jun, Jinkyu Park, Seongbeen Kim, Yousung Jung, Chang Hyuck Choi, Jong Hyun Jang, Seonggyu Lee, Jinwoo Lee","doi":"10.1002/smll.202411374","DOIUrl":null,"url":null,"abstract":"The primary hurdle faced in the practical application of proton exchange membrane water electrolyzer (PEMWE) involves improving the intrinsic kinetic activity of oxygen evolution reaction (OER) electrocatalysts while concurrently enhancing their durability. Although electrocatalysts based on lattice oxygen-mediated mechanism (LOM) have the potential to significantly enhance the activity in OER without being restricted by scaling relationships, they are neglected in acidic electrolytes due to limited durability. In this study, an innovative approach is presented to simultaneously promote the activation of lattice oxygen and improve the durability of LOM-based OER electrocatalysts by incorporating d<sup>0</sup> metal ions into the RuO<sub>2</sub> electrocatalyst. Leveraging the unique electronic properties of the d<sup>0</sup> metal ion, the O 2p band center and Ru-O covalency of the electrocatalyst are successfully engineered, resulting in the change in OER mechanism. Furthermore, in a single cell of PEMWE, the LOM-based electrocatalyst demonstrates outstanding performance, achieving 3.0 A cm<sup>−2</sup> at 1.81 V and maintaining durability for 100 h at 200 mA cm<sup>−2</sup>, surpassing commercial RuO<sub>2</sub>. This innovative strategy challenges the traditional viewpoint that suppressing lattice oxygen activation in OER is essential for enhancing PEMWE durability, offering new perspectives for the development of OER electrocatalysts in acidic electrolytes.","PeriodicalId":228,"journal":{"name":"Small","volume":"36 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411374","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary hurdle faced in the practical application of proton exchange membrane water electrolyzer (PEMWE) involves improving the intrinsic kinetic activity of oxygen evolution reaction (OER) electrocatalysts while concurrently enhancing their durability. Although electrocatalysts based on lattice oxygen-mediated mechanism (LOM) have the potential to significantly enhance the activity in OER without being restricted by scaling relationships, they are neglected in acidic electrolytes due to limited durability. In this study, an innovative approach is presented to simultaneously promote the activation of lattice oxygen and improve the durability of LOM-based OER electrocatalysts by incorporating d0 metal ions into the RuO2 electrocatalyst. Leveraging the unique electronic properties of the d0 metal ion, the O 2p band center and Ru-O covalency of the electrocatalyst are successfully engineered, resulting in the change in OER mechanism. Furthermore, in a single cell of PEMWE, the LOM-based electrocatalyst demonstrates outstanding performance, achieving 3.0 A cm−2 at 1.81 V and maintaining durability for 100 h at 200 mA cm−2, surpassing commercial RuO2. This innovative strategy challenges the traditional viewpoint that suppressing lattice oxygen activation in OER is essential for enhancing PEMWE durability, offering new perspectives for the development of OER electrocatalysts in acidic electrolytes.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.