Natalia Horbach, Małgorzata Kalinka, Natalia Ćwilichowska-Puślecka, Abdulla Al Mamun, Agata Mikołajczyk-Martinez, Boris Turk, Scott J. Snipas, Paulina Kasperkiewicz, Katarzyna M. Groborz, Marcin Poręba
{"title":"Visualization of calpain-1 activation during cell death and its role in GSDMD cleavage using chemical probes","authors":"Natalia Horbach, Małgorzata Kalinka, Natalia Ćwilichowska-Puślecka, Abdulla Al Mamun, Agata Mikołajczyk-Martinez, Boris Turk, Scott J. Snipas, Paulina Kasperkiewicz, Katarzyna M. Groborz, Marcin Poręba","doi":"10.1016/j.chembiol.2025.03.002","DOIUrl":null,"url":null,"abstract":"Calpain-1, a calcium-dependent cysteine protease, plays a vital role in cellular processes such as cell death, cytoskeletal remodeling, signal transduction, and cell cycle progression. While its role in apoptosis, including substrate cleavage for orderly disassembly, is well established, its involvement in pyroptosis remains less understood. This study focused on developing chemical tools to detect calpain-1 activity. Using the hybrid combinatorial substrate library (HyCoSuL) approach with unnatural amino acids, we designed fluorescent substrates, inhibitors, and fluorescent activity-based probe (ABP) specific to calpain-1, enabling its visualization in living cells. We further investigated calpain-1’s expression alongside cell death proteins in immune cells using mass cytometry and observed strong colocalization with gasdermin D (GSDMD). Additionally, we demonstrated that calpain-1 can hydrolyze GSDMD <em>in vitro</em>. Through fluorescence-based substrate assays and mass spectrometry, we identified putative cleavage sites within the GSDMD sequence that may promote pyroptosis. These findings underscore calpain-1’s multifaceted role in cell death pathways, extending beyond apoptosis.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"18 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2025.03.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Calpain-1, a calcium-dependent cysteine protease, plays a vital role in cellular processes such as cell death, cytoskeletal remodeling, signal transduction, and cell cycle progression. While its role in apoptosis, including substrate cleavage for orderly disassembly, is well established, its involvement in pyroptosis remains less understood. This study focused on developing chemical tools to detect calpain-1 activity. Using the hybrid combinatorial substrate library (HyCoSuL) approach with unnatural amino acids, we designed fluorescent substrates, inhibitors, and fluorescent activity-based probe (ABP) specific to calpain-1, enabling its visualization in living cells. We further investigated calpain-1’s expression alongside cell death proteins in immune cells using mass cytometry and observed strong colocalization with gasdermin D (GSDMD). Additionally, we demonstrated that calpain-1 can hydrolyze GSDMD in vitro. Through fluorescence-based substrate assays and mass spectrometry, we identified putative cleavage sites within the GSDMD sequence that may promote pyroptosis. These findings underscore calpain-1’s multifaceted role in cell death pathways, extending beyond apoptosis.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.