{"title":"Strong Coupling between Mn2+ Dopants and CdSe Nanoplatelets Enables Charge-Transfer Transition and Dual Emission","authors":"Lifeng Wang, Junhui Wang, Jinglu Sun, Yongshun Lv, Tao Ding, Pengfei Cheng, Kaifeng Wu","doi":"10.1021/acs.nanolett.5c01269","DOIUrl":null,"url":null,"abstract":"Doping transitional metals into colloidal nanocrystals can significantly modify their excited-state dynamics and enrich their optical and magneto-optical functionalities. Here we synthesize Mn-doped CdSe nanoplatelets and investigate their excited-state dynamics and light-emission mechanisms. Extensive characterizations suggest that Mn<sup>2+</sup> ions are situated near the surface-region of the nanoplatelets. The atomic thinness of nanoplatelets allows for a strong host-dopant coupling, manifested as broadband charge-transfer absorption and emission (near 575 nm) between the host valence band and the dopant <i>d</i>-orbitals. Photoexcitation of the host leads to rapid (a few ps) electron transfer from the conduction band to the <i>d</i>-orbitals, and the resultant charge-transfer state decays within a few ns not only through charge-transfer emission but also generating an excited-state species (likely Mn-Mn dimer) with a characteristic near-infrared emission. These novel photophysics and photochemistry uncovered for quasi-two-dimensional Mn-doped nanocrystals form the basis for optical, magneto-optical, and energy conversion applications using such materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"30 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Doping transitional metals into colloidal nanocrystals can significantly modify their excited-state dynamics and enrich their optical and magneto-optical functionalities. Here we synthesize Mn-doped CdSe nanoplatelets and investigate their excited-state dynamics and light-emission mechanisms. Extensive characterizations suggest that Mn2+ ions are situated near the surface-region of the nanoplatelets. The atomic thinness of nanoplatelets allows for a strong host-dopant coupling, manifested as broadband charge-transfer absorption and emission (near 575 nm) between the host valence band and the dopant d-orbitals. Photoexcitation of the host leads to rapid (a few ps) electron transfer from the conduction band to the d-orbitals, and the resultant charge-transfer state decays within a few ns not only through charge-transfer emission but also generating an excited-state species (likely Mn-Mn dimer) with a characteristic near-infrared emission. These novel photophysics and photochemistry uncovered for quasi-two-dimensional Mn-doped nanocrystals form the basis for optical, magneto-optical, and energy conversion applications using such materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.