Xiaowen Sun, Egon Campos dos Santos, Mingtao Li, Yujie Shi, Kanglei Pang, Miao Zhang, Jiayin Yuan, Hong Liu, Xiaowen Yu
{"title":"Hydrogenation of “Readily Activated Molecule” for Glycine Electrosynthesis","authors":"Xiaowen Sun, Egon Campos dos Santos, Mingtao Li, Yujie Shi, Kanglei Pang, Miao Zhang, Jiayin Yuan, Hong Liu, Xiaowen Yu","doi":"10.1002/anie.202505675","DOIUrl":null,"url":null,"abstract":"The hydrogenation of glyoxylate oxime is the energy‐intensive step in glycine electrosynthesis. To date, there has been a lack of rational guidance for catalyst design specific to this step, and the unique characteristics of the oxime molecule have often been overlooked. In this study, we initiate a theoretical framework to elucidate the fundamental mechanisms of glycine electrosynthesis across typical transition metals. By comprehensively analyzing the competitive reactions, proton‐coupled electron transfer processes, and desorption steps, we identify the unique role of the glyoxylate oxime as a “readily activated molecule”. This inherent property positions Ag, featuring weak adsorption characteristics, as the “dream” catalyst for glycine electrosynthesis. Notably, a record‐low onset potential of –0.09 V vs. RHE and an impressive glycine production rate of 1327 μmol h–1 are achieved when using an ultralight Ag foam electrode. This process enables gram‐scale glycine production within 20 hours and can be widely adapted for synthesizing diverse amino acids. Our findings underscore the vital significance of considering the inherent characteristics of reaction intermediates in catalyst design.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"35 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogenation of glyoxylate oxime is the energy‐intensive step in glycine electrosynthesis. To date, there has been a lack of rational guidance for catalyst design specific to this step, and the unique characteristics of the oxime molecule have often been overlooked. In this study, we initiate a theoretical framework to elucidate the fundamental mechanisms of glycine electrosynthesis across typical transition metals. By comprehensively analyzing the competitive reactions, proton‐coupled electron transfer processes, and desorption steps, we identify the unique role of the glyoxylate oxime as a “readily activated molecule”. This inherent property positions Ag, featuring weak adsorption characteristics, as the “dream” catalyst for glycine electrosynthesis. Notably, a record‐low onset potential of –0.09 V vs. RHE and an impressive glycine production rate of 1327 μmol h–1 are achieved when using an ultralight Ag foam electrode. This process enables gram‐scale glycine production within 20 hours and can be widely adapted for synthesizing diverse amino acids. Our findings underscore the vital significance of considering the inherent characteristics of reaction intermediates in catalyst design.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.