Enhanced oxygen electrode kinetics at low temperatures: an infiltrated Sr(Ti0.3Fe0.55Co0.15)O3-δ–La0.8Sr0.2Ga0.8Mg0.2O3-δ nanocomposite for solid oxide cells†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dong-Yeon Kim, Ju-Ho Shin, Hae-In Jeong and Beom-Kyeong Park
{"title":"Enhanced oxygen electrode kinetics at low temperatures: an infiltrated Sr(Ti0.3Fe0.55Co0.15)O3-δ–La0.8Sr0.2Ga0.8Mg0.2O3-δ nanocomposite for solid oxide cells†","authors":"Dong-Yeon Kim, Ju-Ho Shin, Hae-In Jeong and Beom-Kyeong Park","doi":"10.1039/D4TA09279A","DOIUrl":null,"url":null,"abstract":"<p >Low-temperature (≤650 °C) solid oxide cells hold great potential for next-generation fuel cells and electrolyzers. Although Sr- and Mg-doped LaGaO<small><sub>3</sub></small> (LSGM) is a promising electrolyte for this purpose, developing an electrode that meets all the performance, stability, and compatibility criteria remains challenging. Herein, we report a high-performance nanocomposite oxygen electrode fabricated by infiltrating a porous LSGM framework with the Sr(Ti<small><sub>0.3</sub></small>Fe<small><sub>0.55</sub></small>Co<small><sub>0.15</sub></small>)O<small><sub>3-<em>δ</em></sub></small> (STFC) catalyst, noted for its excellent oxygen transport properties and surface stability. This novel STFC–LSGM electrode, composed of ∼80.1 vol% LSGM and ∼4.2 vol% STFC, exhibits an exceptionally low polarization resistance of ∼0.06 Ω cm<small><sup>2</sup></small> at 600 °C, with a degradation of ∼11.2% per 1000 h under open-circuit conditions. The mechanisms behind this remarkable performance and stability are investigated <em>via</em> impedance analysis using a microstructure-coupled transmission-line model. Integrated into a full cell with a thin LSGM electrolyte and a Sr<small><sub>0.8</sub></small>La<small><sub>0.2</sub></small>TiO<small><sub>3-<em>δ</em></sub></small> support, the optimized electrode delivers impressive performance, achieving a fuel cell power density of ∼1.54 W cm<small><sup>−2</sup></small> and a steam electrolysis current density at 1.3 V of ∼1.37 A cm<small><sup>−2</sup></small>, both at 600 °C. This work demonstrates a promising route for developing high-performance oxygen electrodes for LSGM-based SOC applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 17","pages":" 12406-12415"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09279a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-temperature (≤650 °C) solid oxide cells hold great potential for next-generation fuel cells and electrolyzers. Although Sr- and Mg-doped LaGaO3 (LSGM) is a promising electrolyte for this purpose, developing an electrode that meets all the performance, stability, and compatibility criteria remains challenging. Herein, we report a high-performance nanocomposite oxygen electrode fabricated by infiltrating a porous LSGM framework with the Sr(Ti0.3Fe0.55Co0.15)O3-δ (STFC) catalyst, noted for its excellent oxygen transport properties and surface stability. This novel STFC–LSGM electrode, composed of ∼80.1 vol% LSGM and ∼4.2 vol% STFC, exhibits an exceptionally low polarization resistance of ∼0.06 Ω cm2 at 600 °C, with a degradation of ∼11.2% per 1000 h under open-circuit conditions. The mechanisms behind this remarkable performance and stability are investigated via impedance analysis using a microstructure-coupled transmission-line model. Integrated into a full cell with a thin LSGM electrolyte and a Sr0.8La0.2TiO3-δ support, the optimized electrode delivers impressive performance, achieving a fuel cell power density of ∼1.54 W cm−2 and a steam electrolysis current density at 1.3 V of ∼1.37 A cm−2, both at 600 °C. This work demonstrates a promising route for developing high-performance oxygen electrodes for LSGM-based SOC applications.

Abstract Image

Abstract Image

低温下氧电极动力学的增强:固体氧化物电池的渗透Sr(Ti0.3Fe0.55Co0.15)O3-δ - la0.8 sr0.2 ga0.8 mg0.2o3 -δ纳米复合材料
低温(≤650°C)固体氧化物电池在下一代燃料电池和电解槽中具有巨大的潜力。虽然Sr和mg掺杂LaGaO3 (LSGM)是一种很有前途的电解质,但开发一种满足所有性能、稳定性和兼容性标准的电极仍然具有挑战性。本文报道了一种高性能的纳米复合氧电极,该电极是用Sr(Ti0.3Fe0.55Co0.15)O3-δ (STFC)催化剂渗透多孔LSGM框架制备的,具有优异的氧传输性能和表面稳定性。这种新型STFC - LSGM电极由~ 80.1 vol% LSGM和~ 4.2 vol% STFC组成,在600°C时表现出极低的极化电阻,为~ 0.06 Ω cm2,在开路条件下每1000小时降解~ 11.2%。通过使用微结构耦合传输在线模型进行阻抗分析,研究了这种卓越性能和稳定性背后的机制。优化后的电极集成到具有薄LSGM电解质和Sr0.8La0.2TiO3-δ支撑的全电池中,具有令人印象深刻的性能,在600°C下实现了燃料电池功率密度为~ 1.54 W cm - 2和蒸汽电解电流密度为~ 1.37 a cm - 2的1.3 V。这项工作为基于lsmm的SOC应用开发高性能氧电极提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信