The emergence of eukaryotes as an evolutionary algorithmic phase transition

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Enrique M. Muro, Fernando J. Ballesteros, Bartolo Luque, Jordi Bascompte
{"title":"The emergence of eukaryotes as an evolutionary algorithmic phase transition","authors":"Enrique M. Muro, Fernando J. Ballesteros, Bartolo Luque, Jordi Bascompte","doi":"10.1073/pnas.2422968122","DOIUrl":null,"url":null,"abstract":"The origin of eukaryotes represents one of the most significant events in evolution since it allowed the posterior emergence of multicellular organisms. Yet, it remains unclear how existing regulatory mechanisms of gene activity were transformed to allow this increase in complexity. Here, we address this question by analyzing the length distribution of proteins and their corresponding genes for 6,519 species across the tree of life. We find a scale-invariant relationship between gene mean length and variance maintained across the entire evolutionary history. Using a simple model, we show that this scale-invariant relationship naturally originates through a simple multiplicative process of gene growth. During the first phase of this process, corresponding to prokaryotes, protein length follows gene growth. At the onset of the eukaryotic cell, however, mean protein length stabilizes around 500 amino acids. While genes continued growing at the same rate as before, this growth primarily involved noncoding sequences that complemented proteins in regulating gene activity. Our analysis indicates that this shift at the origin of the eukaryotic cell was due to an algorithmic phase transition equivalent to that of certain search algorithms triggered by the constraints in finding increasingly larger proteins.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2422968122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of eukaryotes represents one of the most significant events in evolution since it allowed the posterior emergence of multicellular organisms. Yet, it remains unclear how existing regulatory mechanisms of gene activity were transformed to allow this increase in complexity. Here, we address this question by analyzing the length distribution of proteins and their corresponding genes for 6,519 species across the tree of life. We find a scale-invariant relationship between gene mean length and variance maintained across the entire evolutionary history. Using a simple model, we show that this scale-invariant relationship naturally originates through a simple multiplicative process of gene growth. During the first phase of this process, corresponding to prokaryotes, protein length follows gene growth. At the onset of the eukaryotic cell, however, mean protein length stabilizes around 500 amino acids. While genes continued growing at the same rate as before, this growth primarily involved noncoding sequences that complemented proteins in regulating gene activity. Our analysis indicates that this shift at the origin of the eukaryotic cell was due to an algorithmic phase transition equivalent to that of certain search algorithms triggered by the constraints in finding increasingly larger proteins.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信