High accuracy inverse design of reconfigurable metasurfaces with transmission-reflection-integrated achromatic functionalities

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao-Qiang Jiang, Wen-Hui Fan, Xu Chen, Lv-Rong Zhao, Chong Qin, Hui Yan, Qi Wu, Pei Ju
{"title":"High accuracy inverse design of reconfigurable metasurfaces with transmission-reflection-integrated achromatic functionalities","authors":"Xiao-Qiang Jiang, Wen-Hui Fan, Xu Chen, Lv-Rong Zhao, Chong Qin, Hui Yan, Qi Wu, Pei Ju","doi":"10.1515/nanoph-2024-0680","DOIUrl":null,"url":null,"abstract":"Artificial intelligence algorithms based on deep neural network (DNN) have become an effective tool for conceiving metasurfaces recently. However, the complex and sharp resonances of metasurfaces will tremendously increase the training difficulty of DNNs with non-negligible prediction errors, which hinders their development in designing multifunctional metasurfaces. To overcome the obstacles, the interaction mechanisms between meta-atoms and terahertz (THz) waves via multipole decomposition are investigated to establish a high-quality dataset, which can decrease the complexity of DNN and improve the prediction accuracy. Meanwhile, transfer learning is also employed to reduce the large quantity of training data required by the DNN. Accordingly, two broadband and transmission-reflection-integrated reconfigurable metasurfaces for focused vortex beam generation are inversely designed by counter propagating the DNN with fraction error less than 10<jats:sup>−4</jats:sup>. The results indicate that transmission-reflection-integrated achromatic performances are well achieved in the frequency range of 0.7–1.3 THz, which have the average focusing efficiency and mode purity higher than 48 % and 92 %, respectively. Moreover, transmission-reflection-integrated achromatic THz imaging and edge detection can also be realized by the metasurfaces. This work provides a high accuracy inverse design method for conceiving multifunctional meta-devices, which may promise further progress for the on-chip THz imaging systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"77 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0680","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence algorithms based on deep neural network (DNN) have become an effective tool for conceiving metasurfaces recently. However, the complex and sharp resonances of metasurfaces will tremendously increase the training difficulty of DNNs with non-negligible prediction errors, which hinders their development in designing multifunctional metasurfaces. To overcome the obstacles, the interaction mechanisms between meta-atoms and terahertz (THz) waves via multipole decomposition are investigated to establish a high-quality dataset, which can decrease the complexity of DNN and improve the prediction accuracy. Meanwhile, transfer learning is also employed to reduce the large quantity of training data required by the DNN. Accordingly, two broadband and transmission-reflection-integrated reconfigurable metasurfaces for focused vortex beam generation are inversely designed by counter propagating the DNN with fraction error less than 10−4. The results indicate that transmission-reflection-integrated achromatic performances are well achieved in the frequency range of 0.7–1.3 THz, which have the average focusing efficiency and mode purity higher than 48 % and 92 %, respectively. Moreover, transmission-reflection-integrated achromatic THz imaging and edge detection can also be realized by the metasurfaces. This work provides a high accuracy inverse design method for conceiving multifunctional meta-devices, which may promise further progress for the on-chip THz imaging systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信