Recovery of topologically robust merging bound states in the continuum in photonic structures with broken symmetry

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huayu Bai, Andriy Shevchenko, Radoslaw Kolkowski
{"title":"Recovery of topologically robust merging bound states in the continuum in photonic structures with broken symmetry","authors":"Huayu Bai, Andriy Shevchenko, Radoslaw Kolkowski","doi":"10.1515/nanoph-2024-0609","DOIUrl":null,"url":null,"abstract":"Optical bound states in the continuum (BICs) provide a unique mechanism of light confinement that holds great potential for fundamental research and applications. Of particular interest are merging BICs realized in planar periodic structures by merging accidental and symmetry-protected BICs. Topological nature of merging BICs renders their <jats:italic>Q</jats:italic> factors exceptionally high and robust. However, the existence of accidental BICs with the radiation loss canceled in both the upward and downward directions relies on the up-down mirror symmetry of the structure. If this symmetry is broken, e.g., by a substrate, the <jats:italic>Q</jats:italic> factor of the mode drops down. Consequently, ultrahigh-<jats:italic>Q</jats:italic> merging BICs cannot be achieved in substrate-supported structures. Here, by studying the case of a one-dimensional periodic dielectric grating, we discover a simple method to fully compensate for the detrimental effect of breaking the up-down mirror symmetry. The method makes use of a thin layer of a high-refractive-index dielectric material on one side of the structure, allowing one to restore the diverging <jats:italic>Q</jats:italic> factor of the accidental BIC and fully recover the merged BIC. As an application example, we show that the proposed structures can be used as ultrahigh-performance optical sensors.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"61 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0609","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical bound states in the continuum (BICs) provide a unique mechanism of light confinement that holds great potential for fundamental research and applications. Of particular interest are merging BICs realized in planar periodic structures by merging accidental and symmetry-protected BICs. Topological nature of merging BICs renders their Q factors exceptionally high and robust. However, the existence of accidental BICs with the radiation loss canceled in both the upward and downward directions relies on the up-down mirror symmetry of the structure. If this symmetry is broken, e.g., by a substrate, the Q factor of the mode drops down. Consequently, ultrahigh-Q merging BICs cannot be achieved in substrate-supported structures. Here, by studying the case of a one-dimensional periodic dielectric grating, we discover a simple method to fully compensate for the detrimental effect of breaking the up-down mirror symmetry. The method makes use of a thin layer of a high-refractive-index dielectric material on one side of the structure, allowing one to restore the diverging Q factor of the accidental BIC and fully recover the merged BIC. As an application example, we show that the proposed structures can be used as ultrahigh-performance optical sensors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信