{"title":"Recovery of topologically robust merging bound states in the continuum in photonic structures with broken symmetry","authors":"Huayu Bai, Andriy Shevchenko, Radoslaw Kolkowski","doi":"10.1515/nanoph-2024-0609","DOIUrl":null,"url":null,"abstract":"Optical bound states in the continuum (BICs) provide a unique mechanism of light confinement that holds great potential for fundamental research and applications. Of particular interest are merging BICs realized in planar periodic structures by merging accidental and symmetry-protected BICs. Topological nature of merging BICs renders their <jats:italic>Q</jats:italic> factors exceptionally high and robust. However, the existence of accidental BICs with the radiation loss canceled in both the upward and downward directions relies on the up-down mirror symmetry of the structure. If this symmetry is broken, e.g., by a substrate, the <jats:italic>Q</jats:italic> factor of the mode drops down. Consequently, ultrahigh-<jats:italic>Q</jats:italic> merging BICs cannot be achieved in substrate-supported structures. Here, by studying the case of a one-dimensional periodic dielectric grating, we discover a simple method to fully compensate for the detrimental effect of breaking the up-down mirror symmetry. The method makes use of a thin layer of a high-refractive-index dielectric material on one side of the structure, allowing one to restore the diverging <jats:italic>Q</jats:italic> factor of the accidental BIC and fully recover the merged BIC. As an application example, we show that the proposed structures can be used as ultrahigh-performance optical sensors.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"61 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0609","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical bound states in the continuum (BICs) provide a unique mechanism of light confinement that holds great potential for fundamental research and applications. Of particular interest are merging BICs realized in planar periodic structures by merging accidental and symmetry-protected BICs. Topological nature of merging BICs renders their Q factors exceptionally high and robust. However, the existence of accidental BICs with the radiation loss canceled in both the upward and downward directions relies on the up-down mirror symmetry of the structure. If this symmetry is broken, e.g., by a substrate, the Q factor of the mode drops down. Consequently, ultrahigh-Q merging BICs cannot be achieved in substrate-supported structures. Here, by studying the case of a one-dimensional periodic dielectric grating, we discover a simple method to fully compensate for the detrimental effect of breaking the up-down mirror symmetry. The method makes use of a thin layer of a high-refractive-index dielectric material on one side of the structure, allowing one to restore the diverging Q factor of the accidental BIC and fully recover the merged BIC. As an application example, we show that the proposed structures can be used as ultrahigh-performance optical sensors.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.