{"title":"Solid oxide electrolysis cell for the super-dry reforming of methane","authors":"","doi":"10.1038/s41557-025-01795-y","DOIUrl":null,"url":null,"abstract":"Dry reforming of methane produces syngas from CO2 and a near-equivalent amount of CH4; the complete utilization of CO2-rich natural gas thus presents a challenge. Now, a tandem electro-thermocatalytic process is demonstrated that integrates the CH4 reforming process with the reverse water–gas shift and H2O electrolysis reactions to efficiently catalyse CO2-rich natural gas into syngas in a solid oxide electrolysis cell.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"31 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01795-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dry reforming of methane produces syngas from CO2 and a near-equivalent amount of CH4; the complete utilization of CO2-rich natural gas thus presents a challenge. Now, a tandem electro-thermocatalytic process is demonstrated that integrates the CH4 reforming process with the reverse water–gas shift and H2O electrolysis reactions to efficiently catalyse CO2-rich natural gas into syngas in a solid oxide electrolysis cell.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.