Jinzhen Huang, Adam H. Clark, Natasha Hales, Kenneth Crossley, Julie Guehl, Radim Skoupy, Thomas J. Schmidt, Emiliana Fabbri
{"title":"Oxidation of interfacial cobalt controls the pH dependence of the oxygen evolution reaction","authors":"Jinzhen Huang, Adam H. Clark, Natasha Hales, Kenneth Crossley, Julie Guehl, Radim Skoupy, Thomas J. Schmidt, Emiliana Fabbri","doi":"10.1038/s41557-025-01784-1","DOIUrl":null,"url":null,"abstract":"<p>Transition metal oxides often undergo dynamic surface reconstruction under oxygen evolution reaction conditions to form the active state, which differs in response to the electrolyte pH. The resulting pH dependency of catalytic activity is commonly observed but poorly understood. Herein we track Co oxidation state changes at different pH-directed (hydr)oxide/electrolyte interfaces using operando X-ray absorption spectroscopy characterizations. Combined with in situ electrochemical analyses, we establish correlations between Co redox dynamics, the flat band potential and Co oxidation state changes to explain the pH dependency of the oxygen evolution activity. Alkaline environments provide a low flat band potential that yields a low-potential Co redox transformation, which favours surface reconstruction. Neutral and acidic environments afford an anodic shift of the Co redox transformation that increases the catalytic overpotential. The larger overpotential in neutral environments is attributable to poor Co atom polarizability and slow Co oxidation state changes. These findings reveal that interfacial Co oxidation state changes directly determine the pH dependency of the oxygen evolution reaction activity.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"13 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01784-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal oxides often undergo dynamic surface reconstruction under oxygen evolution reaction conditions to form the active state, which differs in response to the electrolyte pH. The resulting pH dependency of catalytic activity is commonly observed but poorly understood. Herein we track Co oxidation state changes at different pH-directed (hydr)oxide/electrolyte interfaces using operando X-ray absorption spectroscopy characterizations. Combined with in situ electrochemical analyses, we establish correlations between Co redox dynamics, the flat band potential and Co oxidation state changes to explain the pH dependency of the oxygen evolution activity. Alkaline environments provide a low flat band potential that yields a low-potential Co redox transformation, which favours surface reconstruction. Neutral and acidic environments afford an anodic shift of the Co redox transformation that increases the catalytic overpotential. The larger overpotential in neutral environments is attributable to poor Co atom polarizability and slow Co oxidation state changes. These findings reveal that interfacial Co oxidation state changes directly determine the pH dependency of the oxygen evolution reaction activity.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.