Zhigong Song, Boyu Zhang, Yingchao Yang, Guanhui Gao, Daiming Tang, Qiyi Fang, Youtian Zhang, Bongki Shin, Doug Steinbach, Qing Ai, Xuan Zhao, Yimo Han, Nitin P. Padture, Brian W. Sheldon, Takashi Taniguchi, Kenji Watanabe, Huajian Gao, Jun Lou
{"title":"Flaw-size-dependent mechanical interlayer coupling and edge-reconstruction embrittlement in van der Waals materials","authors":"Zhigong Song, Boyu Zhang, Yingchao Yang, Guanhui Gao, Daiming Tang, Qiyi Fang, Youtian Zhang, Bongki Shin, Doug Steinbach, Qing Ai, Xuan Zhao, Yimo Han, Nitin P. Padture, Brian W. Sheldon, Takashi Taniguchi, Kenji Watanabe, Huajian Gao, Jun Lou","doi":"10.1038/s41563-025-02194-x","DOIUrl":null,"url":null,"abstract":"<p>Van der Waals (vdW) materials consisting of two-dimensional (2D) building blocks have strong in-plane covalent bonding and weak interlayer interactions. While monolayer 2D materials exhibit impressive fracture resistance, as demonstrated in hexagonal boron nitride (h-BN), preserving these remarkable properties in vdW materials remains a challenge. Here we reveal an anomalous mechanical interlayer coupling that involves interlayer-friction toughening and edge-reconstruction embrittlement during the fracture of multilayer h-BN. Both asynchronous and synchronous fracture modes and their flaw-size dependence are identified. Edge reconstruction in the synchronous fracture mode can eliminate a toughening mechanism induced by lattice asymmetry in monolayer h-BN, leading to embrittlement of the multilayer h-BN, while the asynchronous fracture mode results in greater fracture resistance. Such findings will provide fundamental guidelines for engineering interlayer interactions in vdW materials including heterostructures and layered architectures for better mechanical and functional performances.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"28 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02194-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Van der Waals (vdW) materials consisting of two-dimensional (2D) building blocks have strong in-plane covalent bonding and weak interlayer interactions. While monolayer 2D materials exhibit impressive fracture resistance, as demonstrated in hexagonal boron nitride (h-BN), preserving these remarkable properties in vdW materials remains a challenge. Here we reveal an anomalous mechanical interlayer coupling that involves interlayer-friction toughening and edge-reconstruction embrittlement during the fracture of multilayer h-BN. Both asynchronous and synchronous fracture modes and their flaw-size dependence are identified. Edge reconstruction in the synchronous fracture mode can eliminate a toughening mechanism induced by lattice asymmetry in monolayer h-BN, leading to embrittlement of the multilayer h-BN, while the asynchronous fracture mode results in greater fracture resistance. Such findings will provide fundamental guidelines for engineering interlayer interactions in vdW materials including heterostructures and layered architectures for better mechanical and functional performances.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.