SympCoughNet: symptom assisted audio-based COVID-19 detection.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1551298
Yuhao Lin, Xiu Weng, Bolun Zheng, Weiwei Zhang, Zhanjun Bu, Yu Zhou
{"title":"SympCoughNet: symptom assisted audio-based COVID-19 detection.","authors":"Yuhao Lin, Xiu Weng, Bolun Zheng, Weiwei Zhang, Zhanjun Bu, Yu Zhou","doi":"10.3389/fdgth.2025.1551298","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 remains a significant global public health challenge. While nucleic acid tests, antigen tests, and CT imaging provide high accuracy, they face inefficiencies and limited accessibility, making rapid and convenient testing difficult. Recent studies have explored COVID-19 detection using acoustic health signals, such as cough and breathing sounds. However, most existing approaches focus solely on audio classification, often leading to suboptimal accuracy while neglecting valuable prior information, such as clinical symptoms. To address this limitation, we propose SympCoughNet, a deep learning-based COVID-19 audio classification network that integrates cough sounds with clinical symptom data. Our model employs symptom-encoded channel weighting to enhance feature processing, making it more attentive to symptom information. We also conducted an ablation study to assess the impact of symptom integration by removing the symptom-attention mechanism and instead using symptoms as classification labels within a CNN-based architecture. We trained and evaluated SympCoughNet on the UK COVID-19 Vocal Audio Dataset. Our model demonstrated significant performance improvements over traditional audio-only approaches, achieving 89.30% accuracy, 94.74% AUROC, and 91.62% PR on the test set. The results confirm that incorporating symptom data enhances COVID-19 detection performance. Additionally, we found that incorrect symptom inputs could influence predictions. Our ablation study validated that even when symptoms are treated as classification labels, the network can still effectively leverage cough audio to infer symptom-related information.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1551298"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1551298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 remains a significant global public health challenge. While nucleic acid tests, antigen tests, and CT imaging provide high accuracy, they face inefficiencies and limited accessibility, making rapid and convenient testing difficult. Recent studies have explored COVID-19 detection using acoustic health signals, such as cough and breathing sounds. However, most existing approaches focus solely on audio classification, often leading to suboptimal accuracy while neglecting valuable prior information, such as clinical symptoms. To address this limitation, we propose SympCoughNet, a deep learning-based COVID-19 audio classification network that integrates cough sounds with clinical symptom data. Our model employs symptom-encoded channel weighting to enhance feature processing, making it more attentive to symptom information. We also conducted an ablation study to assess the impact of symptom integration by removing the symptom-attention mechanism and instead using symptoms as classification labels within a CNN-based architecture. We trained and evaluated SympCoughNet on the UK COVID-19 Vocal Audio Dataset. Our model demonstrated significant performance improvements over traditional audio-only approaches, achieving 89.30% accuracy, 94.74% AUROC, and 91.62% PR on the test set. The results confirm that incorporating symptom data enhances COVID-19 detection performance. Additionally, we found that incorrect symptom inputs could influence predictions. Our ablation study validated that even when symptoms are treated as classification labels, the network can still effectively leverage cough audio to infer symptom-related information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信