Detection Rate of Diabetic Retinopathy Before and After Implementation of Autonomous AI-based Fundus Photograph Analysis in a Resource-Limited Area in Belize.
Houri Esmaeilkhanian, Karen G Gutierrez, David Myung, Ann Caroline Fisher
{"title":"Detection Rate of Diabetic Retinopathy Before and After Implementation of Autonomous AI-based Fundus Photograph Analysis in a Resource-Limited Area in Belize.","authors":"Houri Esmaeilkhanian, Karen G Gutierrez, David Myung, Ann Caroline Fisher","doi":"10.2147/OPTH.S490473","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the use of an autonomous artificial intelligence (AI)-based device to screen for diabetic retinopathy (DR) and to evaluate the frequency of diabetes mellitus (DM) and DR in an under-resourced population served by the Stanford Belize Vision Clinic (SBVC).</p><p><strong>Patients and methods: </strong>The records of all patients from 2017 to 2024 were collected and analyzed, dividing the study into two time periods: Pre-AI (before June 2022, prior to the implementation of the LumineticsCore<sup>®</sup> device at SBVC) and Post-AI (from June 2022 to the present) and subdivided into post-COVID19 and pre-COVID19 periods. Patients were categorized based on self-reported past medical history (PMH) as DM positive (diagnosed DM) and DM negative (no PMH of DM). AI camera outcomes included: negative for more than mild DR (MTMDR), positive for MTMDR, and insufficient exam quality.</p><p><strong>Results: </strong>A total of 1897 patients with a mean age of 47.6 years were included. The gradability of encounters by the AI device was 89.1%. The frequency of DR detection increased significantly in the Post-AI period (55/639) compared to the Pre-AI period (38/1258), including during the COVID-19 pandemic. The mean age of DR diagnosis was significantly lower in the Post-AI period (44.1 years) compared to Pre-AI period (60.7 years) among DM negative patients. There was a significant association between having DR and hypertension. Additionally, the detection rate of DM increased in the Post-AI period compared to Pre-AI period.</p><p><strong>Conclusion: </strong>Autonomous AI-based screening significantly improves the detection of patients with DR in areas with limited healthcare resources by reducing dependence on on-field ophthalmologists. This innovative approach can be seamlessly integrated into primary care settings, with technicians capturing images quickly and efficiently within just a few minutes. This study demonstrates the effectiveness of autonomous AI in identifying patients with both DR and DM, as well as associated high-burden diseases such as hypertension, across various age ranges.</p>","PeriodicalId":93945,"journal":{"name":"Clinical ophthalmology (Auckland, N.Z.)","volume":"19 ","pages":"993-1006"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical ophthalmology (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OPTH.S490473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the use of an autonomous artificial intelligence (AI)-based device to screen for diabetic retinopathy (DR) and to evaluate the frequency of diabetes mellitus (DM) and DR in an under-resourced population served by the Stanford Belize Vision Clinic (SBVC).
Patients and methods: The records of all patients from 2017 to 2024 were collected and analyzed, dividing the study into two time periods: Pre-AI (before June 2022, prior to the implementation of the LumineticsCore® device at SBVC) and Post-AI (from June 2022 to the present) and subdivided into post-COVID19 and pre-COVID19 periods. Patients were categorized based on self-reported past medical history (PMH) as DM positive (diagnosed DM) and DM negative (no PMH of DM). AI camera outcomes included: negative for more than mild DR (MTMDR), positive for MTMDR, and insufficient exam quality.
Results: A total of 1897 patients with a mean age of 47.6 years were included. The gradability of encounters by the AI device was 89.1%. The frequency of DR detection increased significantly in the Post-AI period (55/639) compared to the Pre-AI period (38/1258), including during the COVID-19 pandemic. The mean age of DR diagnosis was significantly lower in the Post-AI period (44.1 years) compared to Pre-AI period (60.7 years) among DM negative patients. There was a significant association between having DR and hypertension. Additionally, the detection rate of DM increased in the Post-AI period compared to Pre-AI period.
Conclusion: Autonomous AI-based screening significantly improves the detection of patients with DR in areas with limited healthcare resources by reducing dependence on on-field ophthalmologists. This innovative approach can be seamlessly integrated into primary care settings, with technicians capturing images quickly and efficiently within just a few minutes. This study demonstrates the effectiveness of autonomous AI in identifying patients with both DR and DM, as well as associated high-burden diseases such as hypertension, across various age ranges.