Is it a bat or a male? A female moth (Syntomeida epilais, Lepidoptera: Erebidae: Arctiinae) adapts its acoustic signals for defense or courtship.

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Frank Coro
{"title":"Is it a bat or a male? A female moth (Syntomeida epilais, Lepidoptera: Erebidae: Arctiinae) adapts its acoustic signals for defense or courtship.","authors":"Frank Coro","doi":"10.1007/s00359-025-01739-4","DOIUrl":null,"url":null,"abstract":"<p><p>Courtship behavior in the polka-dot wasp moth Syntomieda epilais is the most elaborate acoustic communication system known in the Erebidae. Both males and females must emit their acoustic signals for successful mating under natural conditions in the presence of insectivorous echolocating bats. I stimulated ninety-two females S. epilais during their courtship period (between 2:30 and 6:30 am) with playback of conspecific male and female signals and of the Mexican free-tailed bat (Tadarida brasiliensis) attack sequence. I recorded the acoustic responses of the tested females. On the third night after eclosion, at the initiation of courtship behavior, females discriminate among these three types of acoustic trains, responding preferentially to conspecific male signals. In contrast, during the first two nights after eclosion, they respond strongly to the bat attack sequence but not to conspecific male signals. I also demonstrate that after mating (six nights after eclosion) female moths stop responding to conspecific male signals, while continuing to respond to the bat attack pulse-train. These, as well as other novel observations suggest that these female moths can modulate their acoustic signals according to the stimulating conditions for defense against bats or courtship, by varying their response thresholds and latencies.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01739-4","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Courtship behavior in the polka-dot wasp moth Syntomieda epilais is the most elaborate acoustic communication system known in the Erebidae. Both males and females must emit their acoustic signals for successful mating under natural conditions in the presence of insectivorous echolocating bats. I stimulated ninety-two females S. epilais during their courtship period (between 2:30 and 6:30 am) with playback of conspecific male and female signals and of the Mexican free-tailed bat (Tadarida brasiliensis) attack sequence. I recorded the acoustic responses of the tested females. On the third night after eclosion, at the initiation of courtship behavior, females discriminate among these three types of acoustic trains, responding preferentially to conspecific male signals. In contrast, during the first two nights after eclosion, they respond strongly to the bat attack sequence but not to conspecific male signals. I also demonstrate that after mating (six nights after eclosion) female moths stop responding to conspecific male signals, while continuing to respond to the bat attack pulse-train. These, as well as other novel observations suggest that these female moths can modulate their acoustic signals according to the stimulating conditions for defense against bats or courtship, by varying their response thresholds and latencies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信