Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lucía Ageitos, Andreia Boaro, Angela Cesaro, Marcelo D T Torres, Esther Broset, Cesar de la Fuente-Nunez
{"title":"Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens.","authors":"Lucía Ageitos, Andreia Boaro, Angela Cesaro, Marcelo D T Torres, Esther Broset, Cesar de la Fuente-Nunez","doi":"10.1016/j.tibtech.2025.02.007","DOIUrl":null,"url":null,"abstract":"<p><p>Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.02.007","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信