Haoran Li, Ming Yang, Jiaxin Zhao, Zhenzhen Tan, Longfei Li, Ziwen An, Yi Liu, Xuehui Liu, Xiaoguang Zhang, Jingchao Lu, Ang Li, Huicai Guo
{"title":"Association of Per- and Polyfluoroalkyl Substance Exposure with Coronary Stenosis and Prognosis in Acute Coronary Syndrome.","authors":"Haoran Li, Ming Yang, Jiaxin Zhao, Zhenzhen Tan, Longfei Li, Ziwen An, Yi Liu, Xuehui Liu, Xiaoguang Zhang, Jingchao Lu, Ang Li, Huicai Guo","doi":"10.1021/envhealth.4c00166","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) have been associated with an increased risk of acute coronary syndromes (ACS), but the influence on the degree of coronary stenosis and prognosis is unclear. This study enrolled 571 newly diagnosed ACS cases and investigated the association of 12 PFAS with coronary stenosis severity and prognosis. Coronary stenosis was assessed via Gensini score (GS) and number of lesioned vessels (LVN). Prognosis was estimated by tracking major adverse cardiovascular events (MACE). Statistical analyses included ordered logistic regression, Cox regression, threshold effect models, Bayesian kernel machine regression, and quantile g-computation models. The adverse outcome pathway (AOP) framework was applied to reveal the underlying mechanism. The results showed positive association between perfluorooctanesulfonic acid (PFOS) and coronary stenosis, with an odds ratio (95% confidence interval, CI) of 1.33 (1.06, 1.67) for GS and 1.36 (1.08, 1.71) for LVN. PFOS significantly increased the incidence of poor prognosis, with hazard ratios (95% CI) of 1.96 (1.34, 2.89) for MACE. Threshold effects were observed for PFAS on coronary stenosis and prognosis, with PFOS thresholds of 4.65 ng/mL for GS, 4.54 ng/mL for LVN, and 5.14 ng/mL for MACE, and 5.03 ng/mL for nonfatal myocardial infarction. PFAS mixture exposure increased the occurrence of MACE and nonfatal myocardial infarction. The AOP framework shows that PFAS may impact protein binding, the cytoskeleton, multicellular biological processes, and heart function. In summary, our study revealed the adverse effects of PFAS on the degree of coronary stenosis and prognosis in ACS and identified potentially relevant molecular loci.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 3","pages":"291-307"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/envhealth.4c00166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been associated with an increased risk of acute coronary syndromes (ACS), but the influence on the degree of coronary stenosis and prognosis is unclear. This study enrolled 571 newly diagnosed ACS cases and investigated the association of 12 PFAS with coronary stenosis severity and prognosis. Coronary stenosis was assessed via Gensini score (GS) and number of lesioned vessels (LVN). Prognosis was estimated by tracking major adverse cardiovascular events (MACE). Statistical analyses included ordered logistic regression, Cox regression, threshold effect models, Bayesian kernel machine regression, and quantile g-computation models. The adverse outcome pathway (AOP) framework was applied to reveal the underlying mechanism. The results showed positive association between perfluorooctanesulfonic acid (PFOS) and coronary stenosis, with an odds ratio (95% confidence interval, CI) of 1.33 (1.06, 1.67) for GS and 1.36 (1.08, 1.71) for LVN. PFOS significantly increased the incidence of poor prognosis, with hazard ratios (95% CI) of 1.96 (1.34, 2.89) for MACE. Threshold effects were observed for PFAS on coronary stenosis and prognosis, with PFOS thresholds of 4.65 ng/mL for GS, 4.54 ng/mL for LVN, and 5.14 ng/mL for MACE, and 5.03 ng/mL for nonfatal myocardial infarction. PFAS mixture exposure increased the occurrence of MACE and nonfatal myocardial infarction. The AOP framework shows that PFAS may impact protein binding, the cytoskeleton, multicellular biological processes, and heart function. In summary, our study revealed the adverse effects of PFAS on the degree of coronary stenosis and prognosis in ACS and identified potentially relevant molecular loci.
期刊介绍:
Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health