Yangjoo Kang, Deuk-Su Kim, Hyunjoo Hwang, Yerin Kim, Young-Jin Seo, Peter Hinterdorfer, Kisung Ko
{"title":"Plant-derived recombinant macromolecular PAP-IgG Fc as a novel prostate cancer vaccine candidate eliciting robust immune responses.","authors":"Yangjoo Kang, Deuk-Su Kim, Hyunjoo Hwang, Yerin Kim, Young-Jin Seo, Peter Hinterdorfer, Kisung Ko","doi":"10.1007/s11248-025-00433-0","DOIUrl":null,"url":null,"abstract":"<p><p>Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR. Western blot analysis validated the expression of PAP-Fc and PAP-FcK MPs, which were successfully purified via protein A affinity chromatography. Size-exclusion high-performance liquid chromatography revealed dimeric peaks for PAP-Fc (PAP-Fc<sup>P</sup>) and PAP-FcK (PAP-FcK<sup>P</sup>). Bio-transmission electron microscopy demonstrated 'Y'-shaped protein particles resembling antibody structures. Moreover, PAP-Fc<sup>P</sup> and PAP-FcK<sup>P</sup> exhibited a high association rate with human FcγR and FcRn. Vaccination of mice with both PAP-Fc<sup>P</sup> and PAP-FcK<sup>P</sup> resulted in increased total IgG against PAP and enhanced activation of CD4<sup>+</sup> T cells, comparable to mice immunized with PAP, which served as a positive control. These findings indicate that both plant-derived MPs can effectively induce adaptive immunity, positioning them as promising candidates for prostate cancer vaccines. Overall, plants expressing PAP-Fc and PAP-FcK represent a viable production system for antigenic macromolecule-based prostate cancer vaccines.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"16"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00433-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR. Western blot analysis validated the expression of PAP-Fc and PAP-FcK MPs, which were successfully purified via protein A affinity chromatography. Size-exclusion high-performance liquid chromatography revealed dimeric peaks for PAP-Fc (PAP-FcP) and PAP-FcK (PAP-FcKP). Bio-transmission electron microscopy demonstrated 'Y'-shaped protein particles resembling antibody structures. Moreover, PAP-FcP and PAP-FcKP exhibited a high association rate with human FcγR and FcRn. Vaccination of mice with both PAP-FcP and PAP-FcKP resulted in increased total IgG against PAP and enhanced activation of CD4+ T cells, comparable to mice immunized with PAP, which served as a positive control. These findings indicate that both plant-derived MPs can effectively induce adaptive immunity, positioning them as promising candidates for prostate cancer vaccines. Overall, plants expressing PAP-Fc and PAP-FcK represent a viable production system for antigenic macromolecule-based prostate cancer vaccines.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms