Leelyn Chong, Huihui Su, Yingpeng Liu, Lingling Zheng, Lianying Tao, Hai Bie, Di Xiao, Yang Yang, Wanjun Zhang, Jing Zhang, Jifei Ren, Huafeng Liu, Zhenzhen Ren, Yanhui Chen, Zhangying Xi, Chengwei Li, Lixia Ku
{"title":"Creating a gene-indexed EMS mutation library of Zheng58 for improving maize genetics research.","authors":"Leelyn Chong, Huihui Su, Yingpeng Liu, Lingling Zheng, Lianying Tao, Hai Bie, Di Xiao, Yang Yang, Wanjun Zhang, Jing Zhang, Jifei Ren, Huafeng Liu, Zhenzhen Ren, Yanhui Chen, Zhangying Xi, Chengwei Li, Lixia Ku","doi":"10.1007/s00122-025-04878-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>We created the Zheng58 EMS Mutation Library, which provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development. Understanding the genetic variations present within maize is fundamental to improving maize breeding programs and developing crops with desirable traits. In this work, the Gene-Indexed Ethyl Methanesulfonate (EMS) Mutation Library of Zheng58 in maize was created to accelerate maize genetics research. By chemically inducing mutations in the Zheng58 maize inbred line using (EMS), 426 M<sub>2</sub> EMS lines were generated, of which 185 exhibited heritable phenotypic changes. Coupling with high throughput sequencing techniques, over two million mutations, encompassing single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels), were subsequently identified. Functional annotation of mutation sites further indicated that a significant number of mutations influences important cellular processes, including translation termination (8,279), splice site disruption leading to mis-splicing (9,504), and missense mutations affecting protein-coding sequences (52,494). Therefore, the Gene-Indexed EMS Mutation Library of maize Zheng58 provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 4","pages":"83"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04878-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: We created the Zheng58 EMS Mutation Library, which provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development. Understanding the genetic variations present within maize is fundamental to improving maize breeding programs and developing crops with desirable traits. In this work, the Gene-Indexed Ethyl Methanesulfonate (EMS) Mutation Library of Zheng58 in maize was created to accelerate maize genetics research. By chemically inducing mutations in the Zheng58 maize inbred line using (EMS), 426 M2 EMS lines were generated, of which 185 exhibited heritable phenotypic changes. Coupling with high throughput sequencing techniques, over two million mutations, encompassing single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels), were subsequently identified. Functional annotation of mutation sites further indicated that a significant number of mutations influences important cellular processes, including translation termination (8,279), splice site disruption leading to mis-splicing (9,504), and missense mutations affecting protein-coding sequences (52,494). Therefore, the Gene-Indexed EMS Mutation Library of maize Zheng58 provides a valuable resource for future investigations into the functions and roles of specific genes in maize physiology and development.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.