{"title":"The cerebellum converts input data into a hyper low-resolution granule cell code with spatial dimensions: a hypothesis.","authors":"Mike Gilbert, Anders Rasmussen","doi":"10.1098/rsos.241665","DOIUrl":null,"url":null,"abstract":"<p><p>We present a theory of the inner layer of the cerebellar cortex, the granular layer, where the main excitatory input to the cerebellum is received. We ask how input signals are converted into an internal code and what form that has. While there is a computational element, and the ideas are quantified with a computer simulation, the approach is primarily evidence-led and aimed at experimenters rather than the computational community. Network models are often simplified to provide a noiseless medium for sophisticated computations. We propose, with evidence, the reverse: physiology is highly adapted to provide a noiseless medium for straightforward computations. We find that input data are converted to a hyper low-resolution internal code. Information is coded in the joint activity of large cell groups and therefore has minimum spatial dimensions-the dimensions of a code group. The conversion exploits statistical effects of random sampling. Code group dimensions are an effect of topography, cell morphologies and granular layer architecture. The activity of a code group is the smallest unit of information but not the smallest unit of code-the same information is coded in any random sample of signals. Code in this form is unexpectedly wasteful-there is a huge sacrifice of resolution-but may be a solution to fundamental problems involved in the biological representation of information.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 3","pages":"241665"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241665","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We present a theory of the inner layer of the cerebellar cortex, the granular layer, where the main excitatory input to the cerebellum is received. We ask how input signals are converted into an internal code and what form that has. While there is a computational element, and the ideas are quantified with a computer simulation, the approach is primarily evidence-led and aimed at experimenters rather than the computational community. Network models are often simplified to provide a noiseless medium for sophisticated computations. We propose, with evidence, the reverse: physiology is highly adapted to provide a noiseless medium for straightforward computations. We find that input data are converted to a hyper low-resolution internal code. Information is coded in the joint activity of large cell groups and therefore has minimum spatial dimensions-the dimensions of a code group. The conversion exploits statistical effects of random sampling. Code group dimensions are an effect of topography, cell morphologies and granular layer architecture. The activity of a code group is the smallest unit of information but not the smallest unit of code-the same information is coded in any random sample of signals. Code in this form is unexpectedly wasteful-there is a huge sacrifice of resolution-but may be a solution to fundamental problems involved in the biological representation of information.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.