High-Performance Room-Temperature Terahertz Photodetection Using 2-Dimensional Electron Gas Channel Transport.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-26 eCollection Date: 2025-01-01 DOI:10.34133/research.0656
Mengjuan Liu, Yongzhen Li, Ziyang Ren, Yao Wang, Haiming Zhu, Qinxi Qiu, Nasir Ali, He Zhu, Jiaqi Zhu, Weien Lai, Zhiming Huang, Huizhen Wu
{"title":"High-Performance Room-Temperature Terahertz Photodetection Using 2-Dimensional Electron Gas Channel Transport.","authors":"Mengjuan Liu, Yongzhen Li, Ziyang Ren, Yao Wang, Haiming Zhu, Qinxi Qiu, Nasir Ali, He Zhu, Jiaqi Zhu, Weien Lai, Zhiming Huang, Huizhen Wu","doi":"10.34133/research.0656","DOIUrl":null,"url":null,"abstract":"<p><p>Room-temperature (RT) terahertz (THz) detection finds widespread applications in security inspection, communication, biomedical imaging, and scientific research. However, the state-of-the-art detection strategies are still limited by issues such as low sensitivity, narrow response range, slow response speed, complex fabrication techniques, and difficulties in scaling up to large arrays. Here, we present a high-sensitivity, broadband-response, and high-speed RT THz detection strategy by utilizing a deep subwavelength metal-semiconductor-metal (MSM) structure. The spontaneously formed 2-dimensional electron gas (2DEG) at the CdTe/PbTe interface provides a superior transport channel characterized by high carrier concentration, low scattering, and high mobility. The synergy of the electromagnetic induced well effect formed in the MSM structure, and the efficient and rapid transport capabilities of the 2DEG channel give rise to an impressive performance improvement. The proposed 2DEG photodetector exhibits a broad frequency range from 22 to 519 GHz, an ultralow noise equivalent power of 3.0 × 10<sup>-14</sup> W Hz<sup>-1/2</sup> at 166 GHz, and a short response time of 6.7 μs. This work provides an effective route for the development of high-performance RT THz detection strategies, paving the way for enhanced THz technology applications.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0656"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0656","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Room-temperature (RT) terahertz (THz) detection finds widespread applications in security inspection, communication, biomedical imaging, and scientific research. However, the state-of-the-art detection strategies are still limited by issues such as low sensitivity, narrow response range, slow response speed, complex fabrication techniques, and difficulties in scaling up to large arrays. Here, we present a high-sensitivity, broadband-response, and high-speed RT THz detection strategy by utilizing a deep subwavelength metal-semiconductor-metal (MSM) structure. The spontaneously formed 2-dimensional electron gas (2DEG) at the CdTe/PbTe interface provides a superior transport channel characterized by high carrier concentration, low scattering, and high mobility. The synergy of the electromagnetic induced well effect formed in the MSM structure, and the efficient and rapid transport capabilities of the 2DEG channel give rise to an impressive performance improvement. The proposed 2DEG photodetector exhibits a broad frequency range from 22 to 519 GHz, an ultralow noise equivalent power of 3.0 × 10-14 W Hz-1/2 at 166 GHz, and a short response time of 6.7 μs. This work provides an effective route for the development of high-performance RT THz detection strategies, paving the way for enhanced THz technology applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信