A novel senotherapeutic strategy with azithromycin for preventing endometriosis progression.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Reina Sonehara, Tomoko Nakamura, Takehiko Takeda, Satoshi Kaseki, Tomomi Seki, Hideaki Tanaka, Atsushi Yabuki, Natsuki Miyake, Ayako Muraoka, Satoko Osuka, Akira Iwase, Hiroaki Kajiyama
{"title":"A novel senotherapeutic strategy with azithromycin for preventing endometriosis progression.","authors":"Reina Sonehara, Tomoko Nakamura, Takehiko Takeda, Satoshi Kaseki, Tomomi Seki, Hideaki Tanaka, Atsushi Yabuki, Natsuki Miyake, Ayako Muraoka, Satoko Osuka, Akira Iwase, Hiroaki Kajiyama","doi":"10.1186/s12958-025-01381-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endometriosis is an estrogen-dependent chronic inflammatory disease, however the mechanisms underlying inflammation remain unclear. Non-hormonal drugs that can prevent endometriosis progression and resolve endometriotic infertility are urgently required. We thus focused on cellular senescence as a novel feature of endometriosis. Senescent cells cause chronic inflammation via the senescence-associated secretory phenotype (SASP) factor. It has been reported the effects of senolysis for various diseases in recent years. The aim of this study was to validate the involvement of cellular senescence in endometriosis and as the effects of senolytic drug to develop a novel non-hormonal therapeutic strategy for endometriosis.</p><p><strong>Methods: </strong>The senescence markers were assessed by morphological features and semiquantitative immunofluorescence staining (senescence-associated b-galactosidase [SA-b-Gal], the cyclin-dependent kinase inhibitor 2 A locus [p16<sup>INK4a</sup>], and laminB1) to compare among cell types (normal endometrial stromal cells [nESCs], endometrial stromal cells with endometriosis [eESCs], and ovarian endometriosis [OE] cyst-derived stromal cells [CSCs]). Expression of SASP markers was examined in cell culture supernatants using a cytokine array. In addition, the effects of senolytic drugs (azithromycin [AZM] and navitoclax [ABT263]) on endometriosis were evaluated in vitro and in vivo. The in vivo study used the endometriosis mice model.</p><p><strong>Results: </strong>CSCs exhibited stronger senescence markers. Semi-quantitative SA-β-Gal and p16<sup>INK4a</sup> staining intensities were significantly increased, and that of LaminB1 was decreased in CSCs compared to those in nESCs and eESCs (SA-b-Gal, P < 0.001; p16<sup>INK4a</sup>, P < 0.05; LaminB1, P < 0.05). Cytokine array analysis revealed elevated SASP-related cytokine levels, including interleukin-6 (IL-6), in CSC supernatants compared to those in nESCs. AZM and ABT263 reduced the viable fraction in CSCs (AZM: P < 0.001, ABT263: P < 0.01). Furthermore, AZM suppressed IL-6 expression in CSC culture supernatants (P < 0.05). In murine model, AZM administration reduced endometriotic lesion volume compared to that in vehicle (P < 0.05). Proliferative activity, IL-6 expression levels, and fibrosis within endometriotic lesions also decreased (Ki67, P < 0.01; IL-6, P < 0.001; fibrosis, P < 0.001).</p><p><strong>Conclusions: </strong>Our findings show that cellular senescence is involved in the pathogenesis of endometriosis and that AZM may be useful for preventing endometriosis progression by suppressing the secretion of IL-6 as a SASP.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"47"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01381-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endometriosis is an estrogen-dependent chronic inflammatory disease, however the mechanisms underlying inflammation remain unclear. Non-hormonal drugs that can prevent endometriosis progression and resolve endometriotic infertility are urgently required. We thus focused on cellular senescence as a novel feature of endometriosis. Senescent cells cause chronic inflammation via the senescence-associated secretory phenotype (SASP) factor. It has been reported the effects of senolysis for various diseases in recent years. The aim of this study was to validate the involvement of cellular senescence in endometriosis and as the effects of senolytic drug to develop a novel non-hormonal therapeutic strategy for endometriosis.

Methods: The senescence markers were assessed by morphological features and semiquantitative immunofluorescence staining (senescence-associated b-galactosidase [SA-b-Gal], the cyclin-dependent kinase inhibitor 2 A locus [p16INK4a], and laminB1) to compare among cell types (normal endometrial stromal cells [nESCs], endometrial stromal cells with endometriosis [eESCs], and ovarian endometriosis [OE] cyst-derived stromal cells [CSCs]). Expression of SASP markers was examined in cell culture supernatants using a cytokine array. In addition, the effects of senolytic drugs (azithromycin [AZM] and navitoclax [ABT263]) on endometriosis were evaluated in vitro and in vivo. The in vivo study used the endometriosis mice model.

Results: CSCs exhibited stronger senescence markers. Semi-quantitative SA-β-Gal and p16INK4a staining intensities were significantly increased, and that of LaminB1 was decreased in CSCs compared to those in nESCs and eESCs (SA-b-Gal, P < 0.001; p16INK4a, P < 0.05; LaminB1, P < 0.05). Cytokine array analysis revealed elevated SASP-related cytokine levels, including interleukin-6 (IL-6), in CSC supernatants compared to those in nESCs. AZM and ABT263 reduced the viable fraction in CSCs (AZM: P < 0.001, ABT263: P < 0.01). Furthermore, AZM suppressed IL-6 expression in CSC culture supernatants (P < 0.05). In murine model, AZM administration reduced endometriotic lesion volume compared to that in vehicle (P < 0.05). Proliferative activity, IL-6 expression levels, and fibrosis within endometriotic lesions also decreased (Ki67, P < 0.01; IL-6, P < 0.001; fibrosis, P < 0.001).

Conclusions: Our findings show that cellular senescence is involved in the pathogenesis of endometriosis and that AZM may be useful for preventing endometriosis progression by suppressing the secretion of IL-6 as a SASP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reproductive Biology and Endocrinology
Reproductive Biology and Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.30%
发文量
161
审稿时长
4-8 weeks
期刊介绍: Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences. The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信