Nadia Bazihizina, Chiara Paleni, Stefania Caparrotta, Tania Macchiavelli, Giorgia Guardigli, Ilaria Colzi, Michele Petrillo, Cristina Gonnelli, Antonietta Saccomanno, Veronica Gregis, Stefano Mancuso, Diego Comparini, Martin M Kater, Camilla Pandolfi
{"title":"Azolla mediated alterations in grain yield and quality in Rice.","authors":"Nadia Bazihizina, Chiara Paleni, Stefania Caparrotta, Tania Macchiavelli, Giorgia Guardigli, Ilaria Colzi, Michele Petrillo, Cristina Gonnelli, Antonietta Saccomanno, Veronica Gregis, Stefano Mancuso, Diego Comparini, Martin M Kater, Camilla Pandolfi","doi":"10.1111/ppl.70158","DOIUrl":null,"url":null,"abstract":"<p><p>Rice is one of the most important cereal crops worldwide. To boost its production in a sustainable manner, co-cultivation with Azolla species is often used to supplement its nitrogen (N) demands. However, beyond N nutrition, the physiological and developmental effects of azolla on rice remain unclear. This study investigates these mechanisms by analysing growth, inflorescence meristem transcriptomics, yield, and grain ionomics in rice plants grown alone (R) or with azolla (R + A) in non-limiting N conditions. During the vegetative stage, the presence of azolla increased allocation of resources to rice shoots without affecting root growth, while in the reproductive stage, it improved panicle architecture, with a 6% increase in length and up to 26% increase in panicle branching. Nevertheless, while this increase in panicle branching in R + A translated into a greater number of grains per plant, grain weight declined. As a result, yields were similar between R and R + A. There was also an azolla-induced increment in several mineral elements in R + A grains, with the notable exception of zinc, which declined by more than 30%. Finally, the presence of azolla altered the expression of several gene families, and in particular, it led to the upregulation of numerous transcription factors from the AP2/ERF, WRKY and NAM families. Interestingly, the presence of azolla also led to the upregulation of several genes (including WRKY transcription factors) involved in resistance to several pathogens and abiotic stresses. Overall, our results suggest that rice-azolla co-cultivation has implications that go beyond N-nutrition for sustainable intensification of rice production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70158"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70158","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice is one of the most important cereal crops worldwide. To boost its production in a sustainable manner, co-cultivation with Azolla species is often used to supplement its nitrogen (N) demands. However, beyond N nutrition, the physiological and developmental effects of azolla on rice remain unclear. This study investigates these mechanisms by analysing growth, inflorescence meristem transcriptomics, yield, and grain ionomics in rice plants grown alone (R) or with azolla (R + A) in non-limiting N conditions. During the vegetative stage, the presence of azolla increased allocation of resources to rice shoots without affecting root growth, while in the reproductive stage, it improved panicle architecture, with a 6% increase in length and up to 26% increase in panicle branching. Nevertheless, while this increase in panicle branching in R + A translated into a greater number of grains per plant, grain weight declined. As a result, yields were similar between R and R + A. There was also an azolla-induced increment in several mineral elements in R + A grains, with the notable exception of zinc, which declined by more than 30%. Finally, the presence of azolla altered the expression of several gene families, and in particular, it led to the upregulation of numerous transcription factors from the AP2/ERF, WRKY and NAM families. Interestingly, the presence of azolla also led to the upregulation of several genes (including WRKY transcription factors) involved in resistance to several pathogens and abiotic stresses. Overall, our results suggest that rice-azolla co-cultivation has implications that go beyond N-nutrition for sustainable intensification of rice production.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.