Jakub Kwiatek, Magdalena Paczkowska-Walendowska, Anna Rył, Tomasz M Karpiński, Andrzej Miklaszewski, Ewelina Swora-Cwynar, Marta Leśna, Judyta Cielecka-Piontek
{"title":"Azithromycin-Loaded Nanoparticles Incorporated in Chitosan-Based Soft Hydrogels: A Novel Approach for Dental Drug Delivery.","authors":"Jakub Kwiatek, Magdalena Paczkowska-Walendowska, Anna Rył, Tomasz M Karpiński, Andrzej Miklaszewski, Ewelina Swora-Cwynar, Marta Leśna, Judyta Cielecka-Piontek","doi":"10.3390/pharmaceutics17030304","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Azithromycin (AZC), a BCS class II/IV antibiotic with broad-spectrum antimicrobial activity, has poor water solubility, limiting its formulation potential. This study aimed to develop and optimize AZC-based soft hydrogels for the first time for improved solubility, local controlled drug release, and local dental applications. <b>Methods:</b> AZC nanoparticles (based on polyvinylpyrrolidone) were synthesized via electrospinning enhanced solubility 40-fold. These were incorporated into chitosan (CS) hydrogels with varying concentrations and degrees of deacetylation (DDA), optimized using a factorial design. Hydrogels were characterized for drug release, mucoadhesion, antioxidant, anti-inflammatory, and antimicrobial properties, with Principal Component Analysis (PCA) assessing correlations. <b>Results:</b> Soft hydrogels with 3% CS and 80% DDA achieved sustained drug release (62.9-94.7% over 48 h), strong mucoadhesion, and enhanced biological activity. Higher CS and DDA improved antioxidant and anti-inflammatory effects due to increased free amino groups. Antimicrobial tests showed efficacy against <i>Streptococcus mutans</i> and <i>Staphylococcus aureus</i>. PCA revealed an inverse correlation between AZC release and mucoadhesion and positive correlations between release and anti-inflammatory activity. <b>Conclusions:</b> AZC-based soft hydrogels significantly improved solubility, controlled release, and biological activity, showing strong potential for dental drug delivery. Further clinical validation and optimization are recommended.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Azithromycin (AZC), a BCS class II/IV antibiotic with broad-spectrum antimicrobial activity, has poor water solubility, limiting its formulation potential. This study aimed to develop and optimize AZC-based soft hydrogels for the first time for improved solubility, local controlled drug release, and local dental applications. Methods: AZC nanoparticles (based on polyvinylpyrrolidone) were synthesized via electrospinning enhanced solubility 40-fold. These were incorporated into chitosan (CS) hydrogels with varying concentrations and degrees of deacetylation (DDA), optimized using a factorial design. Hydrogels were characterized for drug release, mucoadhesion, antioxidant, anti-inflammatory, and antimicrobial properties, with Principal Component Analysis (PCA) assessing correlations. Results: Soft hydrogels with 3% CS and 80% DDA achieved sustained drug release (62.9-94.7% over 48 h), strong mucoadhesion, and enhanced biological activity. Higher CS and DDA improved antioxidant and anti-inflammatory effects due to increased free amino groups. Antimicrobial tests showed efficacy against Streptococcus mutans and Staphylococcus aureus. PCA revealed an inverse correlation between AZC release and mucoadhesion and positive correlations between release and anti-inflammatory activity. Conclusions: AZC-based soft hydrogels significantly improved solubility, controlled release, and biological activity, showing strong potential for dental drug delivery. Further clinical validation and optimization are recommended.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.