Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Mohamed El-Tanani, Shakta Mani Satyam, Syed Arman Rabbani, Yahia El-Tanani, Alaa A A Aljabali, Ibrahim Al Faouri, Abdul Rehman
{"title":"Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine.","authors":"Mohamed El-Tanani, Shakta Mani Satyam, Syed Arman Rabbani, Yahia El-Tanani, Alaa A A Aljabali, Ibrahim Al Faouri, Abdul Rehman","doi":"10.3390/pharmaceutics17030375","DOIUrl":null,"url":null,"abstract":"<p><p>Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信