Yifan Ding, Fan Li, Yunyun Wang, Weizhen Pan, Xiangning Fu, Songwei Tan
{"title":"Nanomedicine Approaches for Intervertebral Disc Regeneration: From Bench to Bedside.","authors":"Yifan Ding, Fan Li, Yunyun Wang, Weizhen Pan, Xiangning Fu, Songwei Tan","doi":"10.3390/pharmaceutics17030313","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP) and neurological dysfunction, contributing significantly to disability-adjusted life years globally. The progression of IDD is driven by excessive oxidative stress, inflammation, apoptosis, and fibrosis, which disrupt the balance between anabolic and catabolic processes, leading to extracellular matrix (ECM) degradation and IDD. Current treatment options, such as conservative therapy and surgical intervention, are limited in halting the disease progression and often exacerbate degeneration in adjacent discs. This review highlights the challenges in treating IDD, particularly due to the limited drug delivery efficiency to the intervertebral disc (IVD). It explores the potential of nanobiomedicine and various nanomaterial-based delivery systems, including nanoparticles, microspheres, gene-nanocomplexes, fullerene, exosomes, and nanomaterial-composite hydrogels. These advanced delivery systems can enhance targeted drug delivery, improve local drug concentration, and sustain drug retention within the IVD, offering promising therapeutic strategies to address IDD. The review also examines the therapeutic effects of these nanomaterials on IDD, focusing on their impact on metabolism, inflammation, apoptosis, fibrosis, and stem cell migration and differentiation, aiming to provide innovative strategies for intervertebral disc regeneration.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP) and neurological dysfunction, contributing significantly to disability-adjusted life years globally. The progression of IDD is driven by excessive oxidative stress, inflammation, apoptosis, and fibrosis, which disrupt the balance between anabolic and catabolic processes, leading to extracellular matrix (ECM) degradation and IDD. Current treatment options, such as conservative therapy and surgical intervention, are limited in halting the disease progression and often exacerbate degeneration in adjacent discs. This review highlights the challenges in treating IDD, particularly due to the limited drug delivery efficiency to the intervertebral disc (IVD). It explores the potential of nanobiomedicine and various nanomaterial-based delivery systems, including nanoparticles, microspheres, gene-nanocomplexes, fullerene, exosomes, and nanomaterial-composite hydrogels. These advanced delivery systems can enhance targeted drug delivery, improve local drug concentration, and sustain drug retention within the IVD, offering promising therapeutic strategies to address IDD. The review also examines the therapeutic effects of these nanomaterials on IDD, focusing on their impact on metabolism, inflammation, apoptosis, fibrosis, and stem cell migration and differentiation, aiming to provide innovative strategies for intervertebral disc regeneration.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.