Advanced Manufacturing Methods for High-Dose Inhalable Powders.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Haia A Al-Assaf, Sofia A Papadimitriou, Ayesha Rahman, Raj Badhan, Afzal R Mohammed
{"title":"Advanced Manufacturing Methods for High-Dose Inhalable Powders.","authors":"Haia A Al-Assaf, Sofia A Papadimitriou, Ayesha Rahman, Raj Badhan, Afzal R Mohammed","doi":"10.3390/pharmaceutics17030359","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary drug delivery is governed by three main categories of forces: interparticle forces in the powder formulation, the dispersion forces during inhalation by the device, and deposition forces in the lungs. The interaction between fine inhalable powder particles of the active ingredient is governed by various types of forces, such as capillary forces, electrostatic forces, and van der Waals forces. The different types of inter-particle interactions influence the balance between powder dispersibility and agglomerate stability. The high level of cohesion forces arising from high surface energy of very fine powder hinders powder flowability, leading to issues of agglomeration. Therefore, there is a critical need for advanced manufacturing techniques to overcome the challenges of handling and manufacture of fine cohesive particles, particularly high-dose powders for inhalation. This review will focus on the challenges facing the formulation process of very fine inhalable powder, the various types of existing particle engineering techniques for high-dose powder inhalers, and the characterization techniques employed to analyse the powder characteristics required to meet the acceptance criteria of inhalable preparations.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030359","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary drug delivery is governed by three main categories of forces: interparticle forces in the powder formulation, the dispersion forces during inhalation by the device, and deposition forces in the lungs. The interaction between fine inhalable powder particles of the active ingredient is governed by various types of forces, such as capillary forces, electrostatic forces, and van der Waals forces. The different types of inter-particle interactions influence the balance between powder dispersibility and agglomerate stability. The high level of cohesion forces arising from high surface energy of very fine powder hinders powder flowability, leading to issues of agglomeration. Therefore, there is a critical need for advanced manufacturing techniques to overcome the challenges of handling and manufacture of fine cohesive particles, particularly high-dose powders for inhalation. This review will focus on the challenges facing the formulation process of very fine inhalable powder, the various types of existing particle engineering techniques for high-dose powder inhalers, and the characterization techniques employed to analyse the powder characteristics required to meet the acceptance criteria of inhalable preparations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信