The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals.

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Jurga Bernatoniene, Jolita Stabrauskiene, Jurga Andreja Kazlauskaite, Urte Bernatonyte, Dalia Marija Kopustinskiene
{"title":"The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals.","authors":"Jurga Bernatoniene, Jolita Stabrauskiene, Jurga Andreja Kazlauskaite, Urte Bernatonyte, Dalia Marija Kopustinskiene","doi":"10.3390/pharmaceutics17030390","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030390","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信