Synthesis of Magnetic Biosorbent from Bamboo Powders and Their Application for Methylene Blue Removal from Aqueous Solution: Kinetics, Isotherm, and Regeneration Studies.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yaohui Xu, Yang Zhou, Yunxuan Zhou, Pingkeng Wu, Liangjuan Gao, Zhao Ding
{"title":"Synthesis of Magnetic Biosorbent from Bamboo Powders and Their Application for Methylene Blue Removal from Aqueous Solution: Kinetics, Isotherm, and Regeneration Studies.","authors":"Yaohui Xu, Yang Zhou, Yunxuan Zhou, Pingkeng Wu, Liangjuan Gao, Zhao Ding","doi":"10.3390/molecules30061320","DOIUrl":null,"url":null,"abstract":"<p><p>Bamboo is known as the \"world's second largest forest\". The bamboo industry has become a globally recognized green industry, and the research and development of bamboo-based products have huge economic, ecological, and cultural values. In this study, a biosorbent with magnetically sensitive properties was developed based on natural bamboo powders (BPs) for the removal of methylene blue (MB) dye from aqueous solution. The selected BPs with 60 mesh were magnetized by loading Fe<sub>3</sub>O<sub>4</sub> using an in situ co-precipitation process. The adsorption-desorption equilibrium was nearly established after 30 min, achieving a removal efficiency of 97.7% for 5.0 g/L BPs/Fe<sub>3</sub>O<sub>4</sub> in a 20 mg/L MB solution. The removal efficiency of MB by 5.0 g/L BPs/Fe<sub>3</sub>O<sub>4</sub> exhibited a remarkable enhancement, escalating from 33.9% at pH = 5 to an impressive 93.9% at pH = 11 in a 50 mg/L MB solution. The linear fitting method demonstrated greater suitability for characterizing the adsorption process compared to the nonlinear fitting method, which encompassed both adsorption isotherms and kinetics studies. Among these approaches, the adsorption isotherms were well-fitted to the Langmuir model, while the kinetics were accurately represented by the pseudo-second-order model. The removal efficiency by the recycled BPs/Fe<sub>3</sub>O<sub>4</sub> adsorbent remained at 97.3% over five consecutive cycles, proving that BPs/Fe<sub>3</sub>O<sub>4</sub> has a high potential for being used as a highly efficient biosorbent. Moreover, the BPs/Fe<sub>3</sub>O<sub>4</sub> biosorbent had superparamagnetism with strong magnetic sensitivity, which could facilitate the sustainable removal of hazardous dye from the aqueous solution in practical applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo is known as the "world's second largest forest". The bamboo industry has become a globally recognized green industry, and the research and development of bamboo-based products have huge economic, ecological, and cultural values. In this study, a biosorbent with magnetically sensitive properties was developed based on natural bamboo powders (BPs) for the removal of methylene blue (MB) dye from aqueous solution. The selected BPs with 60 mesh were magnetized by loading Fe3O4 using an in situ co-precipitation process. The adsorption-desorption equilibrium was nearly established after 30 min, achieving a removal efficiency of 97.7% for 5.0 g/L BPs/Fe3O4 in a 20 mg/L MB solution. The removal efficiency of MB by 5.0 g/L BPs/Fe3O4 exhibited a remarkable enhancement, escalating from 33.9% at pH = 5 to an impressive 93.9% at pH = 11 in a 50 mg/L MB solution. The linear fitting method demonstrated greater suitability for characterizing the adsorption process compared to the nonlinear fitting method, which encompassed both adsorption isotherms and kinetics studies. Among these approaches, the adsorption isotherms were well-fitted to the Langmuir model, while the kinetics were accurately represented by the pseudo-second-order model. The removal efficiency by the recycled BPs/Fe3O4 adsorbent remained at 97.3% over five consecutive cycles, proving that BPs/Fe3O4 has a high potential for being used as a highly efficient biosorbent. Moreover, the BPs/Fe3O4 biosorbent had superparamagnetism with strong magnetic sensitivity, which could facilitate the sustainable removal of hazardous dye from the aqueous solution in practical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信