{"title":"Synthesis and Photophysical Properties of AIE-Type Carbazole-Capped Triphenylmethyl Organic Radicals Featuring Non-Aufbau Electronic Structure and Enhanced Photostability.","authors":"Hazretomar Parida, Fudong Ma, Zunqi Liu, Zhaoze Ding, Obolda Ablikim","doi":"10.3390/molecules30061344","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report two novel donor-acceptor (D-A•)-type triphenylmethyl radicals, TTM-1TPE-2Cz and TTM-2TPE-2Cz, synthesized by integrating an aggregation-induced emission (AIE)-active 2-(1, 2, 2-triphenylethenyl)-9H-carbazole (TPE-2Cz) donor with tris(2,4,6-trichlorophenyl)methyl (TTM) radical core. Despite the AIE unit's conventional ACQ-suppressing capability, both radicals exhibit complete emission quenching in solid/solution states but demonstrate 655 nm red emission in polymethyl methacrylate (PMMA)-doped films. Theoretical and experimental analyses reveal that the flexible TPE moiety unexpectedly enhances non-radiative decay while establishing a non-Aufbau electronic configuration through its strong electron-donating nature (-5.16 eV HOMO vs. -5.75 eV SOMO). Remarkably, these radicals achieve unprecedented photostability with half-lives (t₁/₂) 39,000- and 12,000-fold greater than pristine TTM, respectively. This work not only presents a synthetic strategy for stable radicals through non-Aufbau electronic engineering but also elucidates critical structure-property relationships between AIE units and radical photophysics.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061344","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we report two novel donor-acceptor (D-A•)-type triphenylmethyl radicals, TTM-1TPE-2Cz and TTM-2TPE-2Cz, synthesized by integrating an aggregation-induced emission (AIE)-active 2-(1, 2, 2-triphenylethenyl)-9H-carbazole (TPE-2Cz) donor with tris(2,4,6-trichlorophenyl)methyl (TTM) radical core. Despite the AIE unit's conventional ACQ-suppressing capability, both radicals exhibit complete emission quenching in solid/solution states but demonstrate 655 nm red emission in polymethyl methacrylate (PMMA)-doped films. Theoretical and experimental analyses reveal that the flexible TPE moiety unexpectedly enhances non-radiative decay while establishing a non-Aufbau electronic configuration through its strong electron-donating nature (-5.16 eV HOMO vs. -5.75 eV SOMO). Remarkably, these radicals achieve unprecedented photostability with half-lives (t₁/₂) 39,000- and 12,000-fold greater than pristine TTM, respectively. This work not only presents a synthetic strategy for stable radicals through non-Aufbau electronic engineering but also elucidates critical structure-property relationships between AIE units and radical photophysics.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.