Studies on the Hydrometallurgical Transfer of Lead, Copper, and Iron from Direct-to-Blister Copper Flash Smelting Slag to Solution Using L-Ascorbic Acid.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Krzysztof Gargul, Arkadiusz Pawlik, Michał Stępień
{"title":"Studies on the Hydrometallurgical Transfer of Lead, Copper, and Iron from Direct-to-Blister Copper Flash Smelting Slag to Solution Using L-Ascorbic Acid.","authors":"Krzysztof Gargul, Arkadiusz Pawlik, Michał Stępień","doi":"10.3390/molecules30061365","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the behavior of lead, copper, and iron during the leaching process of flash smelting slag from direct-to-blister copper flash smelting using l-ascorbic acid solutions. Flash smelting slag is generated in considerable quantities by various copper smelters worldwide. One drawback of the single-stage flash smelting technology for copper concentrates is the production of large quantities of metal-rich by-products. However, through appropriate management of postprocess waste, valuable components such as copper or lead can be recovered. In practice, the slag is typically subjected to decoppering processes involving electric and converter furnaces. The hydrometallurgical process proposed in this study is aimed at replacing high-temperature recovery methods. The primary objective of the experiments was to investigate the effects of variations in specific leaching parameters and the addition of auxiliary substances on the leaching efficiency of lead, copper, and iron. Four parameters were adjusted during the tests: concentration of l-ascorbic acid, liquid-to-solid phase ratio, temperature, and time. An oxidizing agent in the form of perhydrol and citric acid with an oxidant were used as additives. Optimal process conditions were determined to achieve maximum lead leaching efficiency while maintaining relatively low leaching of copper and iron. The experiments indicated that leaching in ascorbic acid solutions resulted in lead extraction efficiencies ranging from approximately 68% to more than 88%, depending on the conditions. Conversely, relatively low leaching efficiencies of iron (4-12%) and copper (0-29%) were observed.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the behavior of lead, copper, and iron during the leaching process of flash smelting slag from direct-to-blister copper flash smelting using l-ascorbic acid solutions. Flash smelting slag is generated in considerable quantities by various copper smelters worldwide. One drawback of the single-stage flash smelting technology for copper concentrates is the production of large quantities of metal-rich by-products. However, through appropriate management of postprocess waste, valuable components such as copper or lead can be recovered. In practice, the slag is typically subjected to decoppering processes involving electric and converter furnaces. The hydrometallurgical process proposed in this study is aimed at replacing high-temperature recovery methods. The primary objective of the experiments was to investigate the effects of variations in specific leaching parameters and the addition of auxiliary substances on the leaching efficiency of lead, copper, and iron. Four parameters were adjusted during the tests: concentration of l-ascorbic acid, liquid-to-solid phase ratio, temperature, and time. An oxidizing agent in the form of perhydrol and citric acid with an oxidant were used as additives. Optimal process conditions were determined to achieve maximum lead leaching efficiency while maintaining relatively low leaching of copper and iron. The experiments indicated that leaching in ascorbic acid solutions resulted in lead extraction efficiencies ranging from approximately 68% to more than 88%, depending on the conditions. Conversely, relatively low leaching efficiencies of iron (4-12%) and copper (0-29%) were observed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信