{"title":"Performance Optimization of SiO<sub>2f</sub>/SiO<sub>2</sub> Composites Derived from Polysiloxane Ceramic Precursors.","authors":"Xia Zhang, Bo Xiao, Yongzhao Hou, Guangwu Wen","doi":"10.3390/molecules30061385","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, polymethylhydrosiloxane (PMHS) and ethanol were used as raw materials to synthesize the ceramic precursor of side ethoxy polysiloxane (PESO) using dehydration and a dealcoholization reaction, which had a ceramic yield of 87.15% and a very low residual carbon content. With the quartz fiber as a reinforcer, the silica matrix composites (SiO<sub>2f</sub>/SiO<sub>2</sub>) with a double-layer interface (PyC-SiO<sub>2</sub>/BNNSs) coating were manufactured using precursor impregnation pyrolysis (PIP). The as-prepared SiO<sub>2f</sub>/SiO<sub>2</sub> possessed an excellent mechanical property, which exhibited obvious fiber pull-out and debonding phenomena from a fracture morphology. The flexural strength and fracture toughness of SiO<sub>2f</sub>/SiO<sub>2</sub> reached 63.3 MPa and 2.52 MPa·m<sup>1/2</sup>, respectively. Moreover, the SiO<sub>2f</sub>/SiO<sub>2</sub> had suitable dielectric properties, with a dielectric constant of about 2.5 and a dielectric loss of less than 0.01. This work provides an important concept for the enhancement of the dielectric properties and mechanical properties of quartz fiber-reinforced ceramic matrix composites, as well as in the preparation of wave-transmissivity composites.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061385","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, polymethylhydrosiloxane (PMHS) and ethanol were used as raw materials to synthesize the ceramic precursor of side ethoxy polysiloxane (PESO) using dehydration and a dealcoholization reaction, which had a ceramic yield of 87.15% and a very low residual carbon content. With the quartz fiber as a reinforcer, the silica matrix composites (SiO2f/SiO2) with a double-layer interface (PyC-SiO2/BNNSs) coating were manufactured using precursor impregnation pyrolysis (PIP). The as-prepared SiO2f/SiO2 possessed an excellent mechanical property, which exhibited obvious fiber pull-out and debonding phenomena from a fracture morphology. The flexural strength and fracture toughness of SiO2f/SiO2 reached 63.3 MPa and 2.52 MPa·m1/2, respectively. Moreover, the SiO2f/SiO2 had suitable dielectric properties, with a dielectric constant of about 2.5 and a dielectric loss of less than 0.01. This work provides an important concept for the enhancement of the dielectric properties and mechanical properties of quartz fiber-reinforced ceramic matrix composites, as well as in the preparation of wave-transmissivity composites.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.