{"title":"Non-Destructive Detection of Soybean Storage Quality Using Hyperspectral Imaging Technology.","authors":"Yurong Zhang, Wenliang Wu, Xianqing Zhou, Jun-Hu Cheng","doi":"10.3390/molecules30061357","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Soybean storage quality is crucial for subsequent processing and consumption, making it essential to explore an objective, rapid, and non-destructive technology for assessing its quality. (2) Methods: crude fatty acid value is an important indicator for evaluating the storage quality of soybeans. In this study, three types of soybeans were subjected to accelerated aging to analyze trends in crude fatty acid values. The study focused on acquiring raw spectral information using hyperspectral imaging technology, preprocessing by the derivative method (1ST, 2ND), multiplicative scatter correction (MSC), and standard normal variate (SNV). The feature variables were extracted by a variable iterative space shrinkage approach (VISSA), competitive adaptive reweighted sampling (CARS), and a successive projections algorithm (SPA). Partial least squares regression (PLSR), support vector machine (SVM), and extreme learning machine (ELM) models were developed to predict crude fatty acid values of soybeans. The optimal model was used to visualize the dynamic distribution of these values. (3) Results: the crude fatty acid values exhibited a positive correlation with storage time, functioning as a direct indicator of soybean quality. The 1ST-VISSA-SVM model was the optimal predictive model for crude fatty acid values, achieving a coefficient of determination (R<sup>2</sup>) of 0.9888 and a root mean square error (RMSE) of 0.1857 and enabling the visualization of related chemical information. (4) Conclusions: it has been confirmed that hyperspectral imaging technology possesses the capability for the non-destructive and rapid detection of soybean storage quality.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061357","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: Soybean storage quality is crucial for subsequent processing and consumption, making it essential to explore an objective, rapid, and non-destructive technology for assessing its quality. (2) Methods: crude fatty acid value is an important indicator for evaluating the storage quality of soybeans. In this study, three types of soybeans were subjected to accelerated aging to analyze trends in crude fatty acid values. The study focused on acquiring raw spectral information using hyperspectral imaging technology, preprocessing by the derivative method (1ST, 2ND), multiplicative scatter correction (MSC), and standard normal variate (SNV). The feature variables were extracted by a variable iterative space shrinkage approach (VISSA), competitive adaptive reweighted sampling (CARS), and a successive projections algorithm (SPA). Partial least squares regression (PLSR), support vector machine (SVM), and extreme learning machine (ELM) models were developed to predict crude fatty acid values of soybeans. The optimal model was used to visualize the dynamic distribution of these values. (3) Results: the crude fatty acid values exhibited a positive correlation with storage time, functioning as a direct indicator of soybean quality. The 1ST-VISSA-SVM model was the optimal predictive model for crude fatty acid values, achieving a coefficient of determination (R2) of 0.9888 and a root mean square error (RMSE) of 0.1857 and enabling the visualization of related chemical information. (4) Conclusions: it has been confirmed that hyperspectral imaging technology possesses the capability for the non-destructive and rapid detection of soybean storage quality.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.