Natural Flavonoids from Licorice as Potent Inhibitors of β-Glucuronidase Elucidated Through Computational Studies.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingli Liu, Yingying Xue, Hao Yan, Jing Zhou, Xu Long, Yuping Tang
{"title":"Natural Flavonoids from Licorice as Potent Inhibitors of β-Glucuronidase Elucidated Through Computational Studies.","authors":"Jingli Liu, Yingying Xue, Hao Yan, Jing Zhou, Xu Long, Yuping Tang","doi":"10.3390/molecules30061324","DOIUrl":null,"url":null,"abstract":"<p><p>Gut bacterial β-glucuronidase is an important molecular target in several therapeutic applications. β-glucuronidase inhibitors can effectively alleviate gastrointestinal toxicity caused by certain drugs. Licorice, a traditional Chinese medicine, harmonizes various herbs and mitigates the toxicity of hundreds of herbs. In this study, a comprehensive computational strategy was employed to evaluate four licorice flavonoids (liquiritigenin, isoliquiritigenin, liquiritin, and isoliquiritin) as potential <i>Escherichia coli</i> β-glucuronidase (EcGUS) inhibitors. Density functional theory was used to determine their geometries, thermal parameters, dipole moments, polarizabilities, and molecular electrostatic potentials. The inhibitory mechanisms of these four flavonoids on EcGUS were investigated using molecular docking, molecular dynamics simulations, and free energy calculations. The results show that all four flavonoids stably bind to EcGUS. Moreover, all molecules, except liquiritigenin, are potent and selective inhibitors of EcGUS. Further calculations suggest that isoliquiritin exhibits the strongest binding affinity for EcGUS among the four licorice flavonoids. Thus, isoliquiritin is a promising candidate for the development of EcGUS inhibitors. These findings will aid in designing and developing novel flavonoid-based inhibitors of EcGUS to alleviate gastrointestinal toxicity caused by drugs.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061324","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gut bacterial β-glucuronidase is an important molecular target in several therapeutic applications. β-glucuronidase inhibitors can effectively alleviate gastrointestinal toxicity caused by certain drugs. Licorice, a traditional Chinese medicine, harmonizes various herbs and mitigates the toxicity of hundreds of herbs. In this study, a comprehensive computational strategy was employed to evaluate four licorice flavonoids (liquiritigenin, isoliquiritigenin, liquiritin, and isoliquiritin) as potential Escherichia coli β-glucuronidase (EcGUS) inhibitors. Density functional theory was used to determine their geometries, thermal parameters, dipole moments, polarizabilities, and molecular electrostatic potentials. The inhibitory mechanisms of these four flavonoids on EcGUS were investigated using molecular docking, molecular dynamics simulations, and free energy calculations. The results show that all four flavonoids stably bind to EcGUS. Moreover, all molecules, except liquiritigenin, are potent and selective inhibitors of EcGUS. Further calculations suggest that isoliquiritin exhibits the strongest binding affinity for EcGUS among the four licorice flavonoids. Thus, isoliquiritin is a promising candidate for the development of EcGUS inhibitors. These findings will aid in designing and developing novel flavonoid-based inhibitors of EcGUS to alleviate gastrointestinal toxicity caused by drugs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信